Nahm transformation for parabolic Higgs bundles on the projective line --- case of non-semisimple residues

Preprint English OPEN
Szabo, Szilard;
(2016)
  • Related identifiers: doi: 10.1016/j.geomphys.2016.10.018
  • Subject: 14D20 | Mathematics - Algebraic Geometry
    arxiv: Mathematics::Complex Variables | Mathematics::Symplectic Geometry

We extend our earlier construction of Nahm transformation for parabolic Higgs bundles on the projective line to solutions with not necessarily semisimple residues and show that it determines a holomorphic mapping on corresponding moduli spaces. The construction relies o... View more
  • References (9)

    [1] Ku¨rs¸at Aker and Szila´rd Szabo´. Algebraic Nahm transform for parabolic Higgs bundles on P1. Geometry and Topology, 18(5):2487-2545, 2014.

    [2] Olivier Biquard and Philip Boalch. Wild non-abelian Hodge theory on curves. Compos. Math., 140(1):179- 204, 2004.

    [3] S. K. Donaldson and P. B. Kronheimer. The geometry of four-manifolds. Oxford Mathematical Monographs. Oxford Science Publications, 1990.

    [4] K. Kodaira and D. C. Spencer. On deformations of complex analytic structures I. Annals of Mathematics, 67(2):328-401, 1958.

    [5] Takuro Mochizuki. Wild harmonic bundles and wild pure twistor D-modules. Aste´risque, 340:1-607, 2011.

    [6] Carlos T. Simpson. Harmonic bundles on noncompact curves. J. Amer. Math. Soc., 3(3):713-770, 1990.

    [7] Szila´rd Szabo´. Nahm transform for integrable connections on the Riemann sphere. Me´moires de la Socie´te´ Mathe´matique de France, 110:1-114, 2007.

    [8] Szila´rd Szabo´. The Plancherel theorem for Fourier-Laplace-Nahm transform for connections on the projective line. Comm. Math. Phys., 338(2):753-769, 2015.

    [9] Koˆji Yokogawa. Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves. J. Math. Kyoto Univ., 33(2):451-504, 1993.

  • Metrics
Share - Bookmark