publication . Preprint . Other literature type . Conference object . Article . 2006

Extreme sub-wavelength atom localization via coherent population trapping

Kishore T. Kapale; Kishore T. Kapale; Girish S. Agarwal; Girish S. Agarwal;
Open Access English
  • Published: 14 Sep 2006
Abstract
We demonstrate an atom localization scheme based on monitoring of the atomic coherences. We consider atomic transitions in a Lambda configuration where the control field is a standing wave field. The probe field and the control field produce coherence between the two ground states. We show that this coherence has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of the atomic coherence would localize the atom. Interestingly enough the role of the cavity finesse is played by the ratio of the intensities of the pump and probe. This is in fact the reason for obtaining extreme subwavelenth localization. We suggest several metho...
Subjects
arXiv: Physics::Atomic PhysicsPhysics::OpticsCondensed Matter::Quantum Gases
free text keywords: Quantum Physics, Atomic and Molecular Physics, and Optics, Condensed Matter Physics, Atom laser, Quantum optics, Trapping, Interferometry, Physics, Spontaneous emission, Population, education.field_of_study, education, Atomic physics, Laser cooling, Atom, Standing wave, Coherence (physics), Finesse, Quantum mechanics
22 references, page 1 of 2

[1] K. D. Stokes et al., Phys. Rev. Lett. 67, 1997 (1991).

[2] E. Paspalakis and P. L. Knight, Phys. Rev. A 63, 065802 (2001); E. Paspalakis, A. F. Terzis, and P. L. Knight, J. of. Mod. Opt., 52, 1685 (2005).

[3] P. Storey, M. Collett, and D. Walls, Phys. Rev. Lett. 68, 472 (1992); R. Quadt, M. Collett, and D. F. Walls, Phys. Rev. Lett. 74, 351 (1995).

[4] F. L. Kien, G. Rempe, W. P. Schleich, and M. S. Zubairy, Phys. Rev. A 56, 2972 (1997); S. Qamar, S.-Y. Zhu, and M. S. Zubairy, Phys. Rev. A 61, 063806 (2000).

[5] M. Holland, S. Marksteiner, P. Marte, and P. Zoller, Phys. Rev. Lett. 76, 3683 (1996).

[6] S. Kunze, K. Dieckmann, and G. Rempe, Phys. Rev. Lett. 78, 2038 (1997).

[7] J. R. Gardner, M. L. Marable, G. R. Welch, and J. E. Thomas, Phys. Rev. Lett. 70, 3404 (1993); For a review of the work in this area till the year 1995 see J. E. Thomas and L. J. Wang, Phys. Rep. 262, 311 (1995).

[8] M. Sahrai, H. Tajali, K. T. Kapale, and M. S. Zubairy, Phys. Rev. A 72, 013820 (2005).

[9] K. T. Kapale, S. Qamar, and M. S. Zubairy, Phys. Rev. A 67, 023805 (2003).

[10] K. S. Johnson et al., Science 280, 1583 (1998).

[11] A. N. Boto et al., Phys. Rev. Lett. 85, 2733 (2000).

[12] C. S. Adams, M. Sigel, and J. Mlynek, Phys. Rep. 240, 143 (1994).

[13] W. D. Phillips, Rev. Mod. Phys. 70, 721 (1998).

[14] E. Arimondo, in Progress in Optics, edited by E. Wolf (Elsevier Science B. V., Amsterdam, 1996), Vol. XXXV, pp. 257-354.

[15] P. Meystre and M. Sargent III, Elements of Quantum Optics, 3rd ed. (Springer-Verlag, Berlin, 1999).

22 references, page 1 of 2
Any information missing or wrong?Report an Issue