publication . Article . Preprint . Other literature type . Conference object . 2006

subwavelength atom localization via coherent population trapping

Kishore T. Kapale; Girish S. Agarwal;
Open Access
  • Published: 14 Sep 2006 Journal: Journal of Physics B: Atomic, Molecular and Optical Physics, volume 39, pages 3,437-3,446 (issn: 0953-4075, eissn: 1361-6455, Copyright policy)
  • Publisher: IOP Publishing
Abstract
We demonstrate an atom localization scheme based on monitoring of the atomic coherences. We consider atomic transitions in a Lambda configuration where the control field is a standing wave field. The probe field and the control field produce coherence between the two ground states. We show that this coherence has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of the atomic coherence would localize the atom. Interestingly enough the role of the cavity finesse is played by the ratio of the intensities of the pump and probe. This is in fact the reason for obtaining extreme subwavelenth localization. We suggest several metho...
Subjects
arXiv: Physics::Atomic PhysicsPhysics::OpticsCondensed Matter::Quantum Gases
free text keywords: Atomic and Molecular Physics, and Optics, Condensed Matter Physics, Physics, Quantum optics, Atom, Atomic physics, Population, education.field_of_study, education, Trapping, Coherence (physics), Finesse, Standing wave, Interferometry, Atom laser, Spontaneous emission, Laser cooling, Quantum Physics
22 references, page 1 of 2

[1] K. D. Stokes et al., Phys. Rev. Lett. 67, 1997 (1991).

[2] E. Paspalakis and P. L. Knight, Phys. Rev. A 63, 065802 (2001); E. Paspalakis, A. F. Terzis, and P. L. Knight, J. of. Mod. Opt., 52, 1685 (2005).

[3] P. Storey, M. Collett, and D. Walls, Phys. Rev. Lett. 68, 472 (1992); R. Quadt, M. Collett, and D. F. Walls, Phys. Rev. Lett. 74, 351 (1995).

[4] F. L. Kien, G. Rempe, W. P. Schleich, and M. S. Zubairy, Phys. Rev. A 56, 2972 (1997); S. Qamar, S.-Y. Zhu, and M. S. Zubairy, Phys. Rev. A 61, 063806 (2000).

[5] M. Holland, S. Marksteiner, P. Marte, and P. Zoller, Phys. Rev. Lett. 76, 3683 (1996).

[6] S. Kunze, K. Dieckmann, and G. Rempe, Phys. Rev. Lett. 78, 2038 (1997).

[7] J. R. Gardner, M. L. Marable, G. R. Welch, and J. E. Thomas, Phys. Rev. Lett. 70, 3404 (1993); For a review of the work in this area till the year 1995 see J. E. Thomas and L. J. Wang, Phys. Rep. 262, 311 (1995).

[8] M. Sahrai, H. Tajali, K. T. Kapale, and M. S. Zubairy, Phys. Rev. A 72, 013820 (2005).

[9] K. T. Kapale, S. Qamar, and M. S. Zubairy, Phys. Rev. A 67, 023805 (2003).

[10] K. S. Johnson et al., Science 280, 1583 (1998).

[11] A. N. Boto et al., Phys. Rev. Lett. 85, 2733 (2000).

[12] C. S. Adams, M. Sigel, and J. Mlynek, Phys. Rep. 240, 143 (1994).

[13] W. D. Phillips, Rev. Mod. Phys. 70, 721 (1998).

[14] E. Arimondo, in Progress in Optics, edited by E. Wolf (Elsevier Science B. V., Amsterdam, 1996), Vol. XXXV, pp. 257-354.

[15] P. Meystre and M. Sargent III, Elements of Quantum Optics, 3rd ed. (Springer-Verlag, Berlin, 1999).

22 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue