The modified indeterminate couple stress model: Why Yang et al.'s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless

Article, Preprint English OPEN
Münch, Ingo; Neff, Patrizio; Madeo, Angela; Ghiba, Ionel-Dumitrel;
  • Publisher: Wiley-VCH Verlag
  • Related identifiers: doi: 10.1002/zamm.201600107
  • Subject: [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] | Mathematics - Analysis of PDEs | [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] | [SPI.MECA]Engineering Sciences [physics]/Mechanics [] | 74A10, 74A35, 74B05

International audience; We show that the reasoning in favor of a symmetric couple stress tensor in Yang et al.'s introduction of the modified couple stress theory contains a gap, but we present a reasonable physical hypothesis, implying that the couple stress tensor is ... View more
  • References (39)
    39 references, page 1 of 4

    [1] E.L. Aero and E.V. Kuvshinskii. Fundamental equations of the theory of elastic media with rotationally interacting particles. Soviet Physics-Solid State, 2:1272-1281, 1961.

    [2] J.S. Dahler and L.E. Scriven. Theory of structured continua. I. General consideration of angular momentum and polarization. Proc. Royal Soc. London. Series A. Math. Phys. Sci., 275(1363):504-527, 1963.

    [3] N.A. Fleck and J.W. Hutchinson. A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids, 41:1825-1857, 1995.

    [4] N.A. Fleck and J.W. Hutchinson. Strain gradient plasticity. In J.W. Hutchinson and T.Y. Wu, editors, Advances in Applied Mechanics, volume 33, pages 295-361. Academic Press, New-York, 1997.

    [5] N.A. Fleck, G.M. Mu¨ller, M.F. Ashby, and J.W. Hutchinson. Strain gradient plasticity: theory and experiment. Acta. Metall. Mater., 42(2):475-487, 1994.

    [6] I.-D. Ghiba, P. Neff, A. Madeo, and I. Mu¨nch. A variant of the linear isotropic indeterminate couple stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and complete traction boundary conditions., to appear in Math. Mech. Solids, 2015.

    [7] I.D. Ghiba, P. Neff, A. Madeo, L. Placidi, and G. Rosi. The relaxed linear micromorphic continuum: Existence, uniqueness and continuous dependence in dynamics. Math. Mech. Solids, 20:1171-1197, 2014.

    [8] G. Grioli. Elasticita´ asimmetrica. Ann. Mat. Pura Appl., Ser. IV, 50:389-417, 1960.

    [9] G. Grioli. Microstructure as a refinement of Cauchy theory. Problems of physical concreteness. Cont. Mech. Thermo., 15:441- 450, 2003.

    [10] A. Hadjesfandiari and G.F. Dargush. Couple stress theory for solids. Int. J. Solids Struct., 48(18):2496-2510, 2011.

  • Metrics
Share - Bookmark