TIDAL EVOLUTION OF ASTEROIDAL BINARIES. RULED BY VISCOSITY. IGNORANT OF RIGIDITY
- Published: 30 Jun 2015
[2] Batygin, K., and Morbidelli, A. 2015. “Spin-spin Coupling in the Solar System”. The Astrophysical Journal, Vol. 810, article id. 110 [OpenAIRE]
[3] Benjamin, D.; Wahr, J.; Ray, R.D.; Egbert, G.D.; and Desai, S.D. 2006. “Constraints on mantle anelasticity from geodetic observations, and implications for the J2 anomaly.” Geophysical Journal International , Vol. 165, pp. 3 - 16.
[4] Biot, M. A. 1954. “Theory of Stress-Strain Relaxation in Anisotropic Viscoelasticity and Relaxation Phenomena.” Journal of Applied Physics, Vol. 25, pp. 1385 - 1391. http://www.pmi.ou.edu/Biot2005/papers/FILES/054.PDF [OpenAIRE]
[5] Breiter, S.; Roz˙ek, A.; and Vokrouhlicky´, D. 2012. “Stress field and spin axis relaxation for inelastic triaxial ellipsoids.” Monthly Notices of the Royal Astronomical Society of London, Vol. 427, pp. 755 - 769 [OpenAIRE]
[6] Breiter, S., and Murawiecka, M. 2015. “Tumbling asteroid rotation with the YORP torque and inelastic energy dissipation.” Monthly Notices of the Royal Astronomical Society of London, Vol. 449, pp. 2489 - 2497 [OpenAIRE]
[7] Britt, D.T.; Consolmagno, G.J.; and Merline, W.J. 2006. “Small Body Density and Porosity: New Data, New Insights.” The 37th Annual Lunar and Planetary Science Conference. 13 - 17 March 2006, League City, Texas. Abstract No 2214
[8] Burns, J. & Safronov, V. S. 1973. “Asteroid nutation angles.” Monthly Notices of the Royal Astronomical Society of London, Vol. 165, pp. 403 - 411 [OpenAIRE]
[9] Cheng, W. H.; Lee, M. H.; and Peale, S. J. 2014. “Complete tidal evolution of Pluto-Charon.” Icarus, Vol. 233, pp. 242 - 258
[10] Comp`ere, A., and Lemaˆıtre, A. 2014. “The two-body interaction potential in the STF tensor formalism: an application to binary asteroids.” Celestial Mechanics and Dynamical Astronomy, Vol. 119, pp. 313 - 330
[11] Correia, A. C. M., and Laskar, J. 2004. “Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics.” Nature, Vol. 429, pp. 848 - 850.
[12] Darwin, G. H. 1879. “On the precession of a viscous spheroid and on the remote history of the Earth.” Philosophical Transactions of the Royal Society of London, Vol. 170, pp. 447 - 530
[13] Dehant, V. 1987. “Tidal parameters for an inelastic Earth.” Physics of the Earth and Planetary Interiors, Vol. 49, pp. 97 - 116
[14] Eanes, R. J., and Bettadpur, S. V. 1996. “Temporal variability of Earth's gravitational field from laser ranging.” In: Rapp, R. H., Cazenave, A. A., and Nerem, R. S. (Eds.) Global gravity field and its variations. Proceedings of the International Association of Geodesy Symposium No 116 held in Boulder CO in July 1995. IAG Symposium Series. Springer 1997 ISBN: 978-3-540-60882-0
[15] Efroimsky, M. 2001. “Relaxation of wobbling asteroids and comets - theoretical problems, perspectives of experimental observation.” Planetary and Space Science, Vol. 49, pp. 937 - 955
[16] Efroimsky, M. 2002. “Euler, Jacobi, and missions to comets and asteroids.” Advances in Space Research, Vol. 29, pp. 725 - 734 [OpenAIRE]