publication . Preprint . 2012

Limits on a CP-violating scalar axion-nucleon interaction

Raffelt, Georg;
Open Access English
  • Published: 08 May 2012
Abstract
Axions or similar hypothetical pseudoscalar bosons may have a small CP-violating scalar Yukawa interaction g_s(N) with nucleons, causing macroscopic monopole-dipole forces. Torsion-balance experiments constrain g_p(e) g_s(N), whereas g_p(N) g_s(N) is constrained by the depolarization rate of ultra-cold neutrons or spin-polarized nuclei. However, the pseudoscalar couplings g_p(e) and g_p(N) are strongly constrained by stellar energy-loss arguments and g_s(N) by searches for anomalous monopole-monopole forces, together providing the most restrictive limits on g_p(e) g_s(N) and g_p(N) g_s(N). The laboratory limits on g_s(N) are currently the most restrictive constr...
Subjects
arxiv: Nuclear TheoryHigh Energy Physics::PhenomenologyHigh Energy Physics::LatticeNuclear Experiment
free text keywords: High Energy Physics - Phenomenology, High Energy Physics - Experiment
Funded by
EC| INVISIBLES
Project
INVISIBLES
INVISIBLES
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE
Download from
39 references, page 1 of 3

[1] R. D. Peccei, Lect. Notes Phys. 741, 3 (2008).

[2] J. E. Kim and G. Carosi, Rev. Mod. Phys. 82, 557 (2010).

[3] J. E. Moody and F. Wilczek, Phys. Rev. D 30, 130 (1984).

[4] H. Georgi and L. Randall, Nucl. Phys. B 276, 241 (1986).

[5] R. Barbieri, A. Romanino and A. Strumia, Phys. Lett. B 387, 310 (1996).

[6] M. Pospelov, Phys. Rev. D 58, 097703 (1998).

[7] M. Pospelov and A. Ritz, Annals Phys. 318, 119 (2005).

[8] E. Fischbach and C. Talmadge, Nature 356, 207 (1992).

[9] E. G. Adelberger, J. H. Gundlach, B. R. Heckel, S. Hoedl and S. Schlamminger, Prog. Part. Nucl. Phys. 62, 102 (2009).

[10] G. G. Raffelt, Stars as Laboratories for Fundamental Physics (University of Chicago Press 1996); Ann. Rev. Nucl. Part. Sci. 49, 163 (1999). [OpenAIRE]

[11] G. G. Raffelt, Lect. Notes Phys. 741, 51 (2008).

[12] G. Raffelt and A. Weiss, Phys. Rev. D 51, 1495 (1995).

[13] G. G. Raffelt, Phys. Lett. B 166, 402 (1986).

[14] J. Isern, E. Garc´ıa-Berro, S. Torres and S. Catala´n, Astrophys. J. 682, L109 (2008). J. Isern, L. Althaus, S. Catala´n, A. C´orsico, E. Garc´ıa-Berro, M. Salaris and S. Torres, arXiv:1204.3565 [astro-ph.SR].

[15] J. Isern, E. Garc´ıa-Berro, L. G. Althaus and A. H. C´orsico, Astron. Astrophys. 512, A86 (2010). A. H. C´orsico et al., MNRAS, in press (2012) [arXiv:1205.6180].

39 references, page 1 of 3
Abstract
Axions or similar hypothetical pseudoscalar bosons may have a small CP-violating scalar Yukawa interaction g_s(N) with nucleons, causing macroscopic monopole-dipole forces. Torsion-balance experiments constrain g_p(e) g_s(N), whereas g_p(N) g_s(N) is constrained by the depolarization rate of ultra-cold neutrons or spin-polarized nuclei. However, the pseudoscalar couplings g_p(e) and g_p(N) are strongly constrained by stellar energy-loss arguments and g_s(N) by searches for anomalous monopole-monopole forces, together providing the most restrictive limits on g_p(e) g_s(N) and g_p(N) g_s(N). The laboratory limits on g_s(N) are currently the most restrictive constr...
Subjects
arxiv: Nuclear TheoryHigh Energy Physics::PhenomenologyHigh Energy Physics::LatticeNuclear Experiment
free text keywords: High Energy Physics - Phenomenology, High Energy Physics - Experiment
Funded by
EC| INVISIBLES
Project
INVISIBLES
INVISIBLES
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE
Download from
39 references, page 1 of 3

[1] R. D. Peccei, Lect. Notes Phys. 741, 3 (2008).

[2] J. E. Kim and G. Carosi, Rev. Mod. Phys. 82, 557 (2010).

[3] J. E. Moody and F. Wilczek, Phys. Rev. D 30, 130 (1984).

[4] H. Georgi and L. Randall, Nucl. Phys. B 276, 241 (1986).

[5] R. Barbieri, A. Romanino and A. Strumia, Phys. Lett. B 387, 310 (1996).

[6] M. Pospelov, Phys. Rev. D 58, 097703 (1998).

[7] M. Pospelov and A. Ritz, Annals Phys. 318, 119 (2005).

[8] E. Fischbach and C. Talmadge, Nature 356, 207 (1992).

[9] E. G. Adelberger, J. H. Gundlach, B. R. Heckel, S. Hoedl and S. Schlamminger, Prog. Part. Nucl. Phys. 62, 102 (2009).

[10] G. G. Raffelt, Stars as Laboratories for Fundamental Physics (University of Chicago Press 1996); Ann. Rev. Nucl. Part. Sci. 49, 163 (1999). [OpenAIRE]

[11] G. G. Raffelt, Lect. Notes Phys. 741, 51 (2008).

[12] G. Raffelt and A. Weiss, Phys. Rev. D 51, 1495 (1995).

[13] G. G. Raffelt, Phys. Lett. B 166, 402 (1986).

[14] J. Isern, E. Garc´ıa-Berro, S. Torres and S. Catala´n, Astrophys. J. 682, L109 (2008). J. Isern, L. Althaus, S. Catala´n, A. C´orsico, E. Garc´ıa-Berro, M. Salaris and S. Torres, arXiv:1204.3565 [astro-ph.SR].

[15] J. Isern, E. Garc´ıa-Berro, L. G. Althaus and A. H. C´orsico, Astron. Astrophys. 512, A86 (2010). A. H. C´orsico et al., MNRAS, in press (2012) [arXiv:1205.6180].

39 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue