publication . Preprint . Article . 1996

Schumacher's quantum data compression as a quantum computation

Richard Cleve; David P. DiVincenzo;
Open Access English
  • Published: 01 Oct 1996
Abstract
Comment: 37 pages, no figures
Subjects
free text keywords: Quantum Physics, Binary strings, Bijection, Quantum mechanics, Qubit, Figure of merit, Physics, Quantum computer, Data compression, Pseudocode, Discrete mathematics, Quantum
Related Organizations
Funded by
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)

[1] C. H. Bennett, G. Brassard, and A. K. Ekert, “Quantum cryptography”, Scientific American, October 1992, p. 50.

[2] A. Ekert and R. Jozsa, “Quantum computation and Shor's factoring algorithm”, Rev. Mod. Phys., to be published (1996). [OpenAIRE]

[3] C. E. Shannon, “A mathematical theory of communication”, Bell Syst. Tech. J. 27, 379 and 623 (1948).

[4] B. Schumacher, “Quantum coding” Phys. Rev. A 51, 2738 (1995).

[11] I. Chuang and Y. Yamamoto, “A simple quantum computer”, Phys. Rev. A 52, 3489 (1995).

[12] V. Vedral, A. Barenco, and A. Ekert, “Quantum networks for elementary arithmetic operations”, report no. quant-ph/9511018 (1995). [OpenAIRE]

[13] See also D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill, “Efficient Networks for Quantum Factoring”, report no. quant-ph/9602016 (1996). [OpenAIRE]

[14] C. H. Bennett, “Time/space trade-offs for reversible computation”, SIAM J. Comput. 18, 766 (1989); C. H. Bennett, “Logical reversibility of computation”, IBM J. Res. Develop. 17, 525 (1973).

[15] See, e.g., H. F. Chau and H.-K. Lo, “One-way functions in reversible computation”, report no. quant-ph/9506012 (1995).

[16] T. Toffoli “Reversible Computing”, in Automata, Languages and Programming, eds. J. W. de Bakker and J. van Leeuwen (Springer, New York, 1980), p. 632; Technical Memo MIT/LCS/TM-151, MIT Lab. for Comp. Sci. (unpublished).

[17] I. Koren, Computer arithmetic algorithms (Prentice Hall, 1993).

[18] D. P. DiVincenzo, “Two-bit gates are universal for quantum computation”, Phys. Rev. A 51, 1015 (1995); D. Deutsch, A. Barenco, and A. Ekert, “Universality in quantum computation”, Proc. R. Soc. London A 449, 669 (1995); S. Lloyd, “Almost any quantum logic gate is universal”, Phys. Rev. Lett. 75, 346 (1995). [OpenAIRE]

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 1996

Schumacher's quantum data compression as a quantum computation

Richard Cleve; David P. DiVincenzo;