Zak Phase in Discrete-Time Quantum Walks

Preprint English OPEN
Puentes, G.; Santillán, O.;
(2015)
  • Subject: Condensed Matter - Mesoscale and Nanoscale Physics | Quantum Physics
    arxiv: Mathematics::Algebraic Geometry

We report on a simple scheme that may present a non-trivial geometric Zak phase ($\Phi_{Zak}$) structure, which is based on a discrete-time quantum walk architecture. By detecting the Zak phase difference between two trajectories connecting adjacent Dirac points where t... View more
  • References (44)
    44 references, page 1 of 5

    [1] M. V. Berry, J. Phys. A 18 15 (1985).

    [2] J. Hannay, J. Phys. A 18 221 (1985).

    [3] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438 201 (2005).

    [4] C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005); B. Bernevig et al., Science 314, 1757 (2006); M. Koning et al., Science 318, 766 (2007).

    [5] G. Delacretaz, E. Grant, R. Whetten, L. Woste, and J. Zwanzinger, Phys. Rev. Lett. 56, 259 (1986).

    [6] S. Nadj-Perge et al., Science 346, 602 (2014).

    [7] B. Simon, Phys. Rev. Lett. 51, 2167 (1983).

    [8] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).

    [9] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48, 1687 (1993).

    [10] T. Kitagawa et al., Nature Communications 3, 882 (2012).

  • Similar Research Results (1)
  • Related Organizations (1)
  • Metrics
Share - Bookmark