publication . Preprint . 2005

Exact nonparametric inference for detection of nonlinear determinism

Luo, Xiaodong; Zhang, Jie; Small, Michael; Moroz, Irene;
Open Access English
  • Published: 23 Jul 2005
We propose an exact nonparametric inference scheme for the detection of nonlinear determinism. The essential fact utilized in our scheme is that, for a linear stochastic process with jointly symmetric innovations, its ordinary least square (OLS) linear prediction error is symmetric about zero. Based on this viewpoint, a class of linear signed rank statistics, e.g. the Wilcoxon signed rank statistic, can be derived with the known null distributions from the prediction error. Thus one of the advantages of our scheme is that, it can provide exact confidence levels for our null hypothesis tests. Furthermore, the exactness is applicable for finite samples with arbitr...
free text keywords: Nonlinear Sciences - Chaotic Dynamics
Download from
22 references, page 1 of 2

[1] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge Univ. Press, Cambridge, 1997).

[2] A. R. Osborne and A. Provenzale, Physica D 35, 357 (1989).

[3] T. Schreiber and A. Schmitz, Phys. Rev. E 55, 5443 (1997).

[4] J. Theiler, S. Eubank, A. Longtin, B. Gaidrikian and J. D. Farmer, Physica D 58, 77 (1992); J. Theiler and D. Prichard, Physica D 94, 221 (1996).

[5] J. Theiler, P. S. Linsay, and D. M. Rubin, in Time Series Prediction: Forecasting the Future and Understanding the Past, ed. by A. S. Weigend and N. A. Gersbenfeld. Perseus Books, 1994, pp. 429-455.

[6] D. T. Kaplan and L. Glass, Phys. Rev. Lett. 68, 427 (1992);

[7] R. Wayland, D. Bromley, D. Pickett, and A. Passamante, Phys. Rev. Lett. 70, 580 (1993); D. T. Kaplan, Physica D 73, 38 (1994). [OpenAIRE]

[8] M. Paluˇs, V. Albrecht, and I. Dvoˇra´k, Phys. Lett. A 175, 203 (1993).

[9] J. Theiler and D. Prichard, Fields Inst. Commun. 11, 99 (1997).

[10] M. Pourahmadi, Foundations of Time Series Analysis and Prediction Theory (Wiley, New York, 2001).

[11] J. M. Dufour, Econometrica 52, 209 (1984).

[12] R. Luger, Journal of Econometrics 115, 259 (2003).

[13] R. H. Randles and D. A. Wolfe, Introduction to the Theory of Nonparametric Statistics (Wiley, New York, 1979).

[14] J. S. Maritz, Distribution-free Statistical Methods (Chapman &Hall, 1995).

[15] M. H´enon, Comm. Math. Phys. 50, 69 (1976).

22 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue