publication . Preprint . Article . 1998

Topology of Event Horizon

椎野, 克; Siino, Masaru;
Open Access English
  • Published: 01 Jan 1998
The topologies of event horizons are investigated. Considering the existence of the endpoint of the event horizon, it cannot be differentiable. Then there are the new possibilities of the topology of the event horizon though they are excluded in smooth event horizons. The relation between the topology of the event horizon and the endpoint of it is revealed. A torus event horizon is caused by two-dimensional endpoints. One-dimensional endpoints provide the coalescence of spherical event horizons. Moreover, these aspects can be removed by an appropriate timeslicing. The result will be useful to discuss the stability and generality of the topology of the event hori...
free text keywords: General Relativity and Quantum Cosmology
Download fromView all 2 versions
Article . 1998
Provider: JAIRO

[1] S. W. Hawking and G. F. R. Ellice, The large scale structure of space-time Cambridge University Press, New York, 1973.

[2] S. W. Hawking, Commun. Math. Phys. 25 (1972)152.

[3] P. T. Chrusciel and R. M. Wald, Class. Quant. Grav. 11(1994)L147.

[4] D. Gannon,Gen. Relativ. Gravit. 7 (1976)219.

[5] J. L. Friedmann, K. Schleich and D. M. Witt, Phys. Rev. Lett. 71 (1993)1486.

[6] T. Jacobson and S. Venkataramani, Class. Quantum Grav. 12 (1995)1055.

[7] S. Browdy and G. J. Galloway, J. Math. Phys. 36 (1995)4952.

[8] S. A. Hughes, C. R. Keeton, P. Walker, K. Walsh, S. L. Shapiro and S. A. Teukolsky, Phys. Rev. D49 (1994)4004, A. M. Abrahams, G. B. Cook, S. L. Shapiro and S. A. Teukolsky Phys. Rev. D49 (1994)5153, S. L. Shapiro, S. A. Teukolsky and J. Winicour Phys. Rev. D52 (1995)6982.

[9] P. Anninos, D. Bernstein, S, Brandt, J. Libson, J. Mass´o, E. Seidel, L. Smarr, W. Suen, and P. WalkerPhys. Rev. Lett. 74 (1995)630.

[10] R. M. Wald, General Relativity University of Chicago Press, Chicago, 1984.

[11] R. D. Sorkin, Phys. Rev. D33 (1985)978.

[12] R. P. Geroch, J. Math. Phys. 8 (1967)782.

[13] P. T. Chru´sciel, G. J. Galloway, gr-qc/9611032.

[14] I. M. Singer and J. A. Thorpe, Lecture Notes on Elementary Topology and Geometry Springer Verlag, 1976.

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue