Probability density function modeling of scalar mixing from concentrated sources in turbulent channel flow

Preprint English OPEN
Bakosi, J.; Franzese, P.; Boybeyi, Z.;
(2010)
  • Related identifiers: doi: 10.1063/1.2803348
  • Subject: Physics - Fluid Dynamics | Physics - Computational Physics | 76F25, 76F55, 76M35
    arxiv: Physics::Fluid Dynamics

Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of ... View more
  • References (79)
    79 references, page 1 of 8

    1 D. C. Haworth and S. B. Pope, “A generalized Langevin model for turbulent flows”, Phys. Fluids 29, 387 (1986), URL http://link.aip.org/link/?PFL/29/387/1.

    2 P. A. Durbin, “A Reynolds stress model for near-wall turbulence”, J. Fluid Mech. 249, 465 (1993).

    3 P. R. van Slooten, Jayesh, and S. B. Pope, “Advances in PDF modeling for inhomogeneous turbulent flows”, Phys. Fluids 10, 246 (1998), URL http://link.aip.org/link/?PHF/10/246/1.

    4 W. P. Jones and B. E. Launder, “The prediction of laminarization with a two-equation model of turbulence”, Int. J. Heat Mass Tran. 15, 301 (1972).

    5 D. P. Bacon, N. N. Ahmad, Z. Boybeyi, T. J. Dunn, M. S. Hall, P. C. S. Lee, R. A. Sarma, M. D. Turner, K. T. W. III., S. H. Young, et al., “A dynamically adapting weather and dispersion model: The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA)”, Mon. Weather Rev. 128, 2044 (2000).

    6 J. C. Rotta, “Statistiche theorie nichthomogener turbulenz”, Z. Phys. 129, 547 (1951).

    7 B. E. Launder, G. J. Reece, and W. Rodi, “Progress in the development of a Reynolds-stress turbulent closure”, J. Fluid Mech. 68, 537 (1975).

    8 K. Hanjali´c and B. E. Launder, “A Reynolds stress model of turbulence and its application to thin shear flows”, J. Fluid Mech. 52, 609 (1972).

    9 C. G. Speziale, S. Sarkar, and T. B. Gatski, “Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach”, J. Fluid Mech. 227, 245 (1991).

    10 S. B. Pope, Turbulent flows (Cambridge University Press, Cambridge, 2000).

  • Related Organizations (2)
  • Metrics
Share - Bookmark