# Generic CP-Supported CMSA for Binary Integer Linear Programs

- Published: 30 May 2018
- Publisher: Springer International Publishing

- 1
- 2

[1] Tobias Achterberg. Constraint Integer Programming'. PhD thesis, 2007.

[2] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. The traveling salesman problem: a computational study. Princeton university press, 2007.

[3] Thierry Benoist, Bertrand Estellon, Frederic Gardi, Romain Megel, and Karim Nouioua. Localsolver 1.x: a black-box local-search solver for 0-1 programming. 4OR, 9(3):299, 2011.

[4] Christian Blum. Construct, merge, solve and adapt: Application to unbalanced minimum common string partition. In Maria J. Blesa, Christian Blum, Angelo Cangelosi, Vincenzo Cutello, Alessandro Di Nuovo, Mario Pavone, and El-Ghazali Talbi, editors, Proceedings of HM 2016 { 10th International Workshop on Hybrid Metaheuristics, volume 9668 of Lecture Notes in Computer Science, pages 17{31. Springer International Publishing, 2016.

[5] Christian Blum and Maria J. Blesa. A comprehensive comparison of metaheuristics for the repetition-free longest common subsequence problem. Journal of Heuristics, 2017. In press. [OpenAIRE]

[6] Christian Blum, Pedro Pinacho, Manuel Lopez-Iban~ez, and Jose A. Lozano. Construct, merge, solve & adapt: A new general algorithm for combinatorial optimization. Computers & Operations Research, 68:75{ 88, 2016.

[7] Andreas T. Ernst and Gaurav Singh. Lagrangian particle swarm optimization for a resource constrained machine scheduling problem. In 2012 IEEE Congress on Evolutionary Computation, pages 1{8, 2012.

[8] Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. Mathematical Programming, 104(1):91{104, 2005. [OpenAIRE]

[9] Matteo Fischetti and Domenico Salvagnin. Feasibility pump 2.0. Mathematical Programming Computation, 1(2):201{222, 2009.

[10] Robert Fourer, David Gay, and Brian Kernighan. AMPL, volume 117. Boyd & Fraser Danvers, MA, 1993.

[11] Gerald Gamrath, Thorsten Koch, Alexander Martin, Matthias Miltenberger, and Dieter Weninger. Progress in Presolving for Mixed Integer Programming. Mathematical Programming Computation, 7:367{ 398, 2015.

[12] E.L. Johnson, G. Nemhauser, and W.P. Savelsbergh. Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition. INFORMS Journal on Computing, 12, 2000. [OpenAIRE]

[13] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold, Robert E Bixby, Emilie Danna, Gerald Gamrath, Ambros M Gleixner, Stefan Heinz, et al. Miplib 2010. Mathematical Programming Computation, 3(2):103, 2011.

[14] Gary Kochenberger, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng Lu, Haibo Wang, and Yang Wang. The unconstrained binary quadratic programming problem: a survey. Journal of Combinatorial Optimization, 28(1):58{81, 2014.

[15] Evelia Lizarraga, Maria J. Blesa, and Christian Blum. Construct, merge, solve and adapt versus large neighborhood search for solving the multi-dimensional knapsack problem: Which one works better when? In Bin Hu and Manuel Lopez-Iban~ez, editors, Proceedings of EvoCOP 2017 { 17th European Conference on Evolutionary Computation in Combinatorial Optimization, volume 10197 of Lecture Notes in Computer Science, pages 60{74. Springer International Publishing, 2017.

- 1
- 2

##### Related research

- 1
- 2

[1] Tobias Achterberg. Constraint Integer Programming'. PhD thesis, 2007.

[2] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. The traveling salesman problem: a computational study. Princeton university press, 2007.

[3] Thierry Benoist, Bertrand Estellon, Frederic Gardi, Romain Megel, and Karim Nouioua. Localsolver 1.x: a black-box local-search solver for 0-1 programming. 4OR, 9(3):299, 2011.

[4] Christian Blum. Construct, merge, solve and adapt: Application to unbalanced minimum common string partition. In Maria J. Blesa, Christian Blum, Angelo Cangelosi, Vincenzo Cutello, Alessandro Di Nuovo, Mario Pavone, and El-Ghazali Talbi, editors, Proceedings of HM 2016 { 10th International Workshop on Hybrid Metaheuristics, volume 9668 of Lecture Notes in Computer Science, pages 17{31. Springer International Publishing, 2016.

[5] Christian Blum and Maria J. Blesa. A comprehensive comparison of metaheuristics for the repetition-free longest common subsequence problem. Journal of Heuristics, 2017. In press. [OpenAIRE]

[6] Christian Blum, Pedro Pinacho, Manuel Lopez-Iban~ez, and Jose A. Lozano. Construct, merge, solve & adapt: A new general algorithm for combinatorial optimization. Computers & Operations Research, 68:75{ 88, 2016.

[7] Andreas T. Ernst and Gaurav Singh. Lagrangian particle swarm optimization for a resource constrained machine scheduling problem. In 2012 IEEE Congress on Evolutionary Computation, pages 1{8, 2012.

[8] Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. Mathematical Programming, 104(1):91{104, 2005. [OpenAIRE]

[9] Matteo Fischetti and Domenico Salvagnin. Feasibility pump 2.0. Mathematical Programming Computation, 1(2):201{222, 2009.

[10] Robert Fourer, David Gay, and Brian Kernighan. AMPL, volume 117. Boyd & Fraser Danvers, MA, 1993.

[11] Gerald Gamrath, Thorsten Koch, Alexander Martin, Matthias Miltenberger, and Dieter Weninger. Progress in Presolving for Mixed Integer Programming. Mathematical Programming Computation, 7:367{ 398, 2015.

[12] E.L. Johnson, G. Nemhauser, and W.P. Savelsbergh. Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition. INFORMS Journal on Computing, 12, 2000. [OpenAIRE]

[13] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold, Robert E Bixby, Emilie Danna, Gerald Gamrath, Ambros M Gleixner, Stefan Heinz, et al. Miplib 2010. Mathematical Programming Computation, 3(2):103, 2011.

[14] Gary Kochenberger, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng Lu, Haibo Wang, and Yang Wang. The unconstrained binary quadratic programming problem: a survey. Journal of Combinatorial Optimization, 28(1):58{81, 2014.

[15] Evelia Lizarraga, Maria J. Blesa, and Christian Blum. Construct, merge, solve and adapt versus large neighborhood search for solving the multi-dimensional knapsack problem: Which one works better when? In Bin Hu and Manuel Lopez-Iban~ez, editors, Proceedings of EvoCOP 2017 { 17th European Conference on Evolutionary Computation in Combinatorial Optimization, volume 10197 of Lecture Notes in Computer Science, pages 60{74. Springer International Publishing, 2017.

- 1
- 2