publication . Article . Preprint . 2011

Scalar field propagation in the phi^4 kappa-Minkowski model

Meljanac, S.; Samsarov, A.; Trampetic, J.; Wohlgenannt, M.;
Open Access
  • Published: 23 Nov 2011 Journal: Journal of High Energy Physics, volume 2,011 (eissn: 1029-8479, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
Comment: 23 pages, 2 figures; To be published in JHEP. Minor typos corrected. Shorter version of the paper arXiv:1107.2369
free text keywords: Nuclear and High Energy Physics, Semiclassical physics, Propagator, Quantum electrodynamics, Kappa, Physics, Noether's theorem, symbols.namesake, symbols, Scalar field, Minkowski space, Dispersion relation, Renormalization, Mathematical physics, High Energy Physics - Theory, General Relativity and Quantum Cosmology, High Energy Physics - Phenomenology
53 references, page 1 of 4

[1] J. Lukierski, H. Ruegg, A. Nowicki and V. N. Tolstoi, Q deformation of Poincare algebra, Phys. Lett. B 264 (1991) 331. [OpenAIRE]

[2] J. Lukierski, A. Nowicki and H. Ruegg, New quantum Poincare algebra and k deformed field theory, Phys. Lett. B 293 (1992) 344. [OpenAIRE]

[3] S. Majid and H. Ruegg, Bicrossproduct structure of κ Poincar´e group and noncommutative geometry, Phys. Lett. B 334 (1994) 348 [arXiv:hep-th/9405107].

[4] T. R. Govindarajan, K. S. Gupta, E. Harikumar, S. Meljanac and D. Meljanac, Deformed Oscillator Algebras and QFT in κ-Minkowski Spacetime, Phys. Rev. D 80 (2009) 025014, [arXiv:0903.2355 [hep-th]]. [OpenAIRE]

[5] C. A. S. Young and R. Zegers, Covariant particle statistics and intertwiners of the κ-deformed Poincare algebra, Nucl. Phys. B 797 (2008) 537 [arXiv:0711.2206 [hep-th]].

[6] M. Arzano and A. Marciano, Fock space, quantum fields and κ-Poincar´e symmetries, Phys. Rev. D 76 (2007) 125005 [arXiv:0707.1329 [hep-th]]. [OpenAIRE]

[7] M. Daszkiewicz, J. Lukierski and M. Woronowicz, Towards quantum noncommutative κ-deformed field theory, Phys. Rev. D 77 (2008) 105007 [arXiv:0708.1561]. [OpenAIRE]

[8] V. G. Drinfel'd, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060-1064 (Russian); translation in Sov. Math. Dokl. 32 (1985) 254.

[9] V. G. Drinfel'd, Quasi-Hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114-148 (Russian); translation in Leningrad Math. J. 1 (1990), no. 6, 1419-1457.

[10] A. Borowiec, J. Lukierski and V. N. Tolstoy, Jordanian quantum deformations of D = 4 anti-de-Sitter and Poincare superalgebras, Eur. Phys. J. C 44 (2005) 139 [arXiv:hep-th/0412131].

[11] A. Borowiec, J. Lukierski and V. N. Tolstoy, Jordanian twist quantization of D=4 Lorentz and Poincare algebras and D=3 contraction limit, Eur. Phys. J. C 48, 633 (2006) [arXiv:hep-th/0604146].

[12] A. P. Balachandran, A. Pinzul and B. A. Qureshi, Twisted Poincare Invariant Quantum Field Theories, Phys. Rev. D 77 (2008) 025021 [arXiv:0708.1779 [hep-th]].

[13] J. G. Bu, H. C. Kim, Y. Lee, C. H. Vac and J. H. Yee, κ-deformed Spacetime From Twist, Phys. Lett. B 665 (2008) 95 [arXiv:hep-th/0611175].

[14] T. R. Govindarajan, K. S. Gupta, E. Harikumar, S. Meljanac and D. Meljanac, Twisted Statistics in κ-Minkowski Spacetime, Phys. Rev. D 77 (2008) 105010, [arXiv:0802.1576 [hep-th]].

[15] A. Borowiec and A. Pachol, κ-Minkowski spacetime as the result of Jordanian twist deformation, Phys. Rev. D 79 (2009) 045012 [arXiv:0812.0576 [math-ph]]. [OpenAIRE]

53 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue