publication . Preprint . 2016

Estimating the Probability of Wind Ramping Events: A Data-driven Approach

Wang, Cheng; Wei, Wei; Wang, Jianhui; Qiu, Feng;
Open Access English
  • Published: 15 Mar 2016
This letter proposes a data-driven method for estimating the probability of wind ramping events without exploiting the exact probability distribution function (PDF) of wind power. Actual wind data validates the proposed method.
arXiv: Physics::Atmospheric and Oceanic PhysicsPhysics::Space PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar Astrophysics
ACM Computing Classification System: ComputerApplications_MISCELLANEOUS
free text keywords: Mathematics - Optimization and Control
Download from

[1] C. Ferreira, L. J. Gama, A. Botterud, and J. Wang, “A survey on wind power ramp forecasting,” Technical Report, Argonne National Laboratory (ANL), 2011.

[2] A. M. Foley, P. G. Leahy, A. Marvuglia, and E. J. McKeogh, “Current methods and advances in forecasting of wind power generation,” Renew. Energy, vol. 37, no. 1, pp. 1-8, Jan. 2012.

[3] P. Pinson and G. Kariniotakis, “Conditional prediction intervals of wind power generation,” IEEE Trans. Power Syst., vol. 25, no. 4, pp. 1845- 1856, Nov. 2010.

[4] G. A. Hanasusanto, V. Roitch, D. Kuhn, and W. Wiesemann, “A distributionally robust perspective on uncertainty quantification and chance constrained programming,” Math. Program., Mar. 2015. [OpenAIRE]

[5] N. Fournier and A. Guillin, “On the rate of the convergence in Wasserstein distance of the empirical measure,” Probab. Theory Relat. Fields, 2015. [OpenAIRE]

[6] N. R. E. L. (NREL). (2012) Eastern wind dataset. [Online]. Available:

Any information missing or wrong?Report an Issue