publication . Article . Preprint . 2012

Analytic Investigation of the Branch Cut of the Green Function in Schwarzschild Space-time

Casals, Marc; Ottewill, Adrian C.;
Open Access
  • Published: 01 Oct 2012 Journal: Physical Review D, volume 87 (issn: 1550-7998, eissn: 1550-2368, Copyright policy)
  • Publisher: American Physical Society (APS)
Abstract
The retarded Green function for linear field perturbations in Schwarzschild black hole space-time possesses a branch cut in the complex-frequency plane. This branch cut has remained largely unexplored: only asymptotic analyses either for small-frequency (yielding the known tail decay at late times of an initial perturbation of the black hole) or for large-frequency (quasinormal modes close to the branch cut in this regime have been linked to quantum properties of black holes) have been carried out in the literature. The regime along the cut inaccessible to these asymptotic analyses has so far remained essentially unreachable. We present a new method for the anal...
Subjects
free text keywords: Nuclear and High Energy Physics, Black hole, Quantum electrodynamics, Green's function, symbols.namesake, symbols, Schwarzschild metric, Classical mechanics, Perturbation theory, Point particle, Physics, Space time, Schwarzschild radius, Perturbation (astronomy), Mathematical analysis, General Relativity and Quantum Cosmology, High Energy Physics - Theory
Funded by
SFI| Space-time Approach to Gravitational Radiation Reaction
Project
  • Funder: Science Foundation Ireland (SFI)
  • Project Code: 10/RFP/PHY2847
  • Funding stream: SFI Research Frontiers Programme (RFP)
48 references, page 1 of 4

[1] E. W. Leaver, Phys. Rev. D 34, 384 (1986).

[2] E. W. Leaver, Phys. Rev. D 38, 725 (1988), URL http://link.aps.org/doi/10.1103/PhysRevD.38.725.

[3] E. Berti, V. Cardoso, and A. O. Starinets, Class. Quant. Grav. 26, 163001 (2009), 0905.2975.

[4] R. H. Price, Phys. Rev. D5, 2419 (1972).

[5] R. H. Price, Phys. Rev. D5, 2439 (1972).

[6] M. Casals and A. Ottewill, Phys. Rev. Lett. 109, 111101 (2012), URL http://link.aps.org/doi/10.1103/PhysRevLett. 109.111101.

[7] M. Casals and A. C. Ottewill, in preparation.

[8] A. Maassen van den Brink, J. Math. Phys. 45, 327 (2004), gr-qc/0303095.

[9] M. Casals and A. Ottewill, Phys.Rev. D86, 024021 (2012), 1112.2695.

[10] M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008), 0711.3145.

[11] U. Keshet and A. Neitzke, Phys. Rev. D78, 044006 (2008), 0709.1532.

[12] P. T. Leung, A. Maassen van den Brink, K. W. Mak, and K. Young (2003), gr-qc/0307024.

[13] P. T. Leung, A. Maassen van den Brink, K. W. Mak, and K. Young, Class. Quant. Grav. 20, L217 (2003), gr-qc/0301018.

[14] A. Maassen van den Brink, Phys. Rev. D62, 064009 (2000), gr-qc/0001032.

[15] R. M. Wald, Journal of Mathematical Physics 14, 1453 (1973).

48 references, page 1 of 4
Abstract
The retarded Green function for linear field perturbations in Schwarzschild black hole space-time possesses a branch cut in the complex-frequency plane. This branch cut has remained largely unexplored: only asymptotic analyses either for small-frequency (yielding the known tail decay at late times of an initial perturbation of the black hole) or for large-frequency (quasinormal modes close to the branch cut in this regime have been linked to quantum properties of black holes) have been carried out in the literature. The regime along the cut inaccessible to these asymptotic analyses has so far remained essentially unreachable. We present a new method for the anal...
Subjects
free text keywords: Nuclear and High Energy Physics, Black hole, Quantum electrodynamics, Green's function, symbols.namesake, symbols, Schwarzschild metric, Classical mechanics, Perturbation theory, Point particle, Physics, Space time, Schwarzschild radius, Perturbation (astronomy), Mathematical analysis, General Relativity and Quantum Cosmology, High Energy Physics - Theory
Funded by
SFI| Space-time Approach to Gravitational Radiation Reaction
Project
  • Funder: Science Foundation Ireland (SFI)
  • Project Code: 10/RFP/PHY2847
  • Funding stream: SFI Research Frontiers Programme (RFP)
48 references, page 1 of 4

[1] E. W. Leaver, Phys. Rev. D 34, 384 (1986).

[2] E. W. Leaver, Phys. Rev. D 38, 725 (1988), URL http://link.aps.org/doi/10.1103/PhysRevD.38.725.

[3] E. Berti, V. Cardoso, and A. O. Starinets, Class. Quant. Grav. 26, 163001 (2009), 0905.2975.

[4] R. H. Price, Phys. Rev. D5, 2419 (1972).

[5] R. H. Price, Phys. Rev. D5, 2439 (1972).

[6] M. Casals and A. Ottewill, Phys. Rev. Lett. 109, 111101 (2012), URL http://link.aps.org/doi/10.1103/PhysRevLett. 109.111101.

[7] M. Casals and A. C. Ottewill, in preparation.

[8] A. Maassen van den Brink, J. Math. Phys. 45, 327 (2004), gr-qc/0303095.

[9] M. Casals and A. Ottewill, Phys.Rev. D86, 024021 (2012), 1112.2695.

[10] M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008), 0711.3145.

[11] U. Keshet and A. Neitzke, Phys. Rev. D78, 044006 (2008), 0709.1532.

[12] P. T. Leung, A. Maassen van den Brink, K. W. Mak, and K. Young (2003), gr-qc/0307024.

[13] P. T. Leung, A. Maassen van den Brink, K. W. Mak, and K. Young, Class. Quant. Grav. 20, L217 (2003), gr-qc/0301018.

[14] A. Maassen van den Brink, Phys. Rev. D62, 064009 (2000), gr-qc/0001032.

[15] R. M. Wald, Journal of Mathematical Physics 14, 1453 (1973).

48 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2012

Analytic Investigation of the Branch Cut of the Green Function in Schwarzschild Space-time

Casals, Marc; Ottewill, Adrian C.;