26 references, page 1 of 2

[1] N. Assimakopoulos. A network interdiction model for hospital infection control. Computers in Biology and Medicine, 17(6):413-422, 1987.

[2] C. Bazgan, S. Toubaline, and D. Vanderpooten. Complexity of determining the most vital elements for the p-median and p-center location problems. Journal of Combinatorial Optimization, 25(2):191-207, 2013. [OpenAIRE]

[3] C. Bazgan, S. Toubaline, and D. Vanderpooten. Critical edges for the assignment problem: Complexity and exact resolution. Operations Research Letters, 41(6):685- 689, 2013. [OpenAIRE]

[4] C. Bazgan, S. Toubaline, and D. Vanderpooten. Critical edges/nodes for the minimum spanning tree problem: complexity and approximation. Journal of Combinatorial Optimization, 26(1):178-189, 2013. [OpenAIRE]

[5] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and Aravindan Vijayaraghavan. Detecting high log-densities: an O(n1/4) approximation for densest k-subgraph. In Proceedings of the forty-second ACM Symposium on Theory of Computing, pages 201- 210, 2010.

[6] A. Bhaskara, M. Charikar, A. Vijayaraghavan, V. Guruswami, and Y. Zhou. Polynomial integrality gaps for strong SDP relaxations of Densest k-Subgraph. In Proceedings of the twenty-third annual ACM-SIAM Symposium on Discrete Algorithms, pages 388- 405, 2012.

[7] C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips, and E. Sundberg. A decomposition-based pseudoapproximation algorithm for network flow inhibition. In Network Interdiction and Stochastic Integer Programming, pages 51-68. Springer, 2003.

[8] Julia Chuzhoy, Yury Makarychev, Aravindan Vijayaraghavan, and Yuan Zhou. Approximation algorithms and hardness of the k-route cut problem. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 780-799, 2012.

[9] M. Dinitz and A. Gupta. Packing interdiction and partial covering problems. In Integer Programming and Combinatorial Optimization, pages 157-168. Springer, 2013.

[10] U. Feige. Relations between average case complexity and approximation complexity. In Proceedings of the thiry-fourth annual ACM Symposium on Theory of Computing, pages 534-543, 2002. [OpenAIRE]

[11] U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica, 29(3):410-421, 2001.

[12] Greg N Frederickson and Roberto Solis-Oba. Increasing the weight of minimum spanning trees. Journal of Algorithms, 33(2):244-266, 1999.

[13] T.E. Harris and F.S. Ross. Fundamentals of a method for evaluating rail net capacities. Technical Report RM-1573, RAND Corp. 1955.

[14] G. Joret and A. Vetta. Reducing the rank of a matroid. arXiv:1211.4853, 2012.

[15] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, Vladimir Gurvich, Gabor Rudolf, and Jihui Zhao. On short paths interdiction problems: total and nodewise limited interdiction. Theory of Computing Systems, 43(2):204-233, 2008.

26 references, page 1 of 2