## The Kruskal Count

*Lagarias, Jeffrey C.*;

*Rains, Eric*;

*Vanderbei, Robert J.*;

- Publisher: Springer
- Subject: Mathematics - Optimization and Control | Mathematics - Probability | 60J10

- References (12) 12 references, page 1 of 2
- 1
- 2

[1] D. Aldons and P. Diaconis, Shuffling Cards and Stopping Times, Amer. Math. Monthly 93 (1986), 333-348.

[2] P. Diaconis, Group Representations in Probability and Statistics, IMS Lecture Notes - Monograph Series No. 11, Institute of Math. Statistics, Hayward, Calif. 1988.

[3] W. Doeblin, Expos´e de la theorie des chaines simple constantes de Markov ´a un nombre fini d'etats, Rev. Math Union Interbalkanique 2 (1938), 77-105.

[4] M. D. Donsker and S. R. S. Varadhan, Asymptotic Evaluation of Certain Markov Process Expectations for Large Time I, Comm. Pure. Appl. Math. 28 (1975), 1-47.

[5] C. Fulves and M. Gardner, The Kruskal Principle, The Pallbearers Review, June 1975.

[6] M. Gardner, Mathematical Games, Sci. Amer. 238 (1978) No. 2 (February), 19-32.

[7] M. Gardner, From Penrose Tiles to Trapdoor Ciphers, W. H. Freeman Co., New York, 1988. (Chapter 19)

[8] D. Griffeath, Coupling Methods for Markov Processes, in: Studies in Probability and Ergodic Theory (G. C. Rota, Ed.), Academic Press, New York, 1978, pp. 1-43.

[9] W. Haga and S. Robins, On Kruskal's Principle, in Organic Mathematics, (J. Borwein, P. Borwein, L Jorgenson, and R. Corless, Eds.), Canadian Math. Society Conference Proceedings, vol. 20, AMS: Providence, RI, 1997, pp. 407-412.

[10] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979.

- Metrics No metrics available

- Download from

- Cite this publication