Multiple Scattering Expansion of the Self-Energy at Finite Temperature

Preprint English OPEN
Jeon, Sangyong; Ellis, Paul J.; (1998)

An often used rule that the thermal correction to the self-energy is the thermal phase-space times the forward scattering amplitude from target particles is shown to be the leading term in an exact multiple scattering expansion. Starting from imaginary-time finite-tempe... View more
  • References (31)
    31 references, page 1 of 4

    Gζ(k) = Z d2ωπ Nζ(ω) Z0∞ dt eik0t−ǫte−iωt ρζ+(ω) + Z−0∞ dt eik0t+ǫteiωt ρζ−(ω) = Z d2ωπ [θ(ω) + (−1)ζsign(ω)nζ(|ω|)] ǫ + ρi(ζ+ω(ω−) k0) + ǫ + ρi(ζ−ω(ω+) k0)

    [1] E.V. Shuryak, Collective Interaction of Mesons in Hot Hadronic Matter, Nucl. Phys. A. 533, 761 (1991).

    [2] N. Ashida, H. Nakkagawa, A. Niegawa, and H. Yokota, Evaluating Finite-Temperature Reaction Rate, Ann. Phys. (NY) 215, 315 (1992).

    [3] M. Kacir and I. Zahed, Nucleons at Finite Temperature, Phys. Rev. D 54, 5536 (1996).

    [4] H. Leutwyler and A.V. Smilga, Nucleons at Finite Temperature, Nucl. Phys. B 342, 302 (1990).

    [5] R.L. Kobes and G.W. Semenoff, Discontinuity of Green Functions in Field Theory at Finite Temperature and Density (I), (II) Nucl. Phys. B 260, 714 (1985); B 272, 329 (1986).

    [6] A.J. Niemi and G.W. Semenoff, Finite Temperature Quantum Field Theory in Minkowski Space, Ann. of Phys. (NY) 152, 105 (1984).

    [7] R. Kobes, Retarded Functions, Dispersion Relations, and Cutkosky Rules at Zero and Finite Temperature, Phys. Rev. D 43, 1269 (1991).

    [8] R. Kobes, Correspondence between Imaginary-Time and Real-Time Finite-Temperature Field Theory, Phys. Rev. D 42, 562 (1990).

    [9] T.S. Evans, N-Point Finite Temperature Expectation Values at Real Times, Nucl. Phys. B 374, 340 (1992).

  • Metrics
    No metrics available
Share - Bookmark