## Link invariants from finite Coxeter racks

*Nelson, Sam*;

*Wieghard, Ryan*;

- Subject: 57M2, 57M27, 17D99 | Mathematics - Quantum Algebra | Mathematics - Geometric Topologyarxiv: Mathematics::Geometric Topology | Mathematics::Quantum Algebra | Computer Science::Robotics | Mathematics::Category Theory

- References (9)
[1] E. Brieskorn, Automorphic sets and braids and singularities. Contemp. Math. 78 (1988) 45-115.

[2] D. Joyce. A classifying invariant of knots, the knot quandle. J. Pure Appl. Algebra 23 (1982) 37-65.

[3] R. Fenn and C. Rourke. Racks and links in codimension two. J. Knot Theory Rami cations 1 (1992), 343-406.

[4] S. V. Matveev. Distributive groupoids in knot theory. Math. USSR, Sb. 47 (1984) 73-83.

[5] E.A. Navas and S. Nelson. On symplectic quandles. To appear in Osaka J. Math., arXiv:math/0703727

[6] S. Nelson. A polynomial invariant of nite racks. J. Alg. Appl. 7 (2008) 263-273.

[7] S. Nelson. Link invariants from nite racks. arXiv:0808.0029

[8] S. Nelson and J.L. Rische. On bilinear biquandles. Colloq. Math. 112 (2008) 279-289.

[9] M. Takasaki. Abstraction of symmetric transformation (in Japanese). Tohoku Math J. 49 (1943) 145-207. Department of Mathematics, Claremont McKenna College, 850 Colubmia Ave., Claremont, CA 91711 Email address: knots@esotericka.org Department of Mathematics, Pomona College, 610 N. College Ave., Claremont, CA 91711 Email address: Ryan.Wieghard@pomona.edu

- Metrics No metrics available

- Download from

- Cite this publication