publication . Article . Preprint . 2008

LINK INVARIANTS FROM FINITE COXETER RACKS

Sam Nelson; Ryan Wieghard;
Open Access
  • Published: 11 Aug 2008 Journal: Journal of Knot Theory and Its Ramifications, volume 20, pages 1,247-1,257 (issn: 0218-2165, eissn: 1793-6527, Copyright policy)
  • Publisher: World Scientific Pub Co Pte Lt
Abstract
Comment: 8 pages
Persistent Identifiers
Subjects
arXiv: Computer Science::RoboticsMathematics::Geometric TopologyMathematics::Quantum AlgebraMathematics::Category Theory
free text keywords: Algebra and Number Theory, Mathematics - Geometric Topology, Mathematics - Quantum Algebra, 57M2, 57M27, 17D99, Pure mathematics, Rack, Invariant (mathematics), Coxeter group, Mathematics, Knot (unit)

[1] E. Brieskorn, Automorphic sets and braids and singularities. Contemp. Math. 78 (1988) 45-115. [OpenAIRE]

[2] D. Joyce. A classifying invariant of knots, the knot quandle. J. Pure Appl. Algebra 23 (1982) 37-65.

[3] R. Fenn and C. Rourke. Racks and links in codimension two. J. Knot Theory Rami cations 1 (1992), 343-406.

[4] S. V. Matveev. Distributive groupoids in knot theory. Math. USSR, Sb. 47 (1984) 73-83. [OpenAIRE]

[5] E.A. Navas and S. Nelson. On symplectic quandles. To appear in Osaka J. Math., arXiv:math/0703727

[6] S. Nelson. A polynomial invariant of nite racks. J. Alg. Appl. 7 (2008) 263-273.

[7] S. Nelson. Link invariants from nite racks. arXiv:0808.0029

[8] S. Nelson and J.L. Rische. On bilinear biquandles. Colloq. Math. 112 (2008) 279-289.

[9] M. Takasaki. Abstraction of symmetric transformation (in Japanese). Tohoku Math J. 49 (1943) 145-207. Department of Mathematics, Claremont McKenna College, 850 Colubmia Ave., Claremont, CA 91711 Email address: knots@esotericka.org Department of Mathematics, Pomona College, 610 N. College Ave., Claremont, CA 91711 Email address: Ryan.Wieghard@pomona.edu

Any information missing or wrong?Report an Issue