Definably compact groups definable in real closed fields.II

Preprint English OPEN
Barriga, Eliana;
(2017)
  • Subject: 03C64, 20G20, 22E15, 03C68, 22B99 | Mathematics - Logic

We continue the analysis of definably compact groups definable in a real closed field $\mathcal{R}$. In [3], we proved that for every definably compact definably connected semialgebraic group $G$ over $\mathcal{R}$ there are a connected $R$-algebraic group $H$, a defina... View more
  • References (20)
    20 references, page 1 of 2

    [1] Elías Baro and Mário J. Edmundo. Corrigendum to: “Locally definable groups in o-minimal structures” [J. Algebra 301 (2006), no. 1, 194-223; mr2230327] by Edmundo. J. Algebra, 320(7):3079-3080, 2008.

    [2] Elías Baro and Margarita Otero. Locally definable homotopy. Ann. Pure Appl. Logic, 161(4):488-503, 2010.

    [3] Eliana Barriga. Definably compact groups definable in real closed fields. I. arXiv:1703.08606v2 [math.LO], pages 1-25, 2017.

    [4] Alessandro Berarducci. Cohomology of groups in o-minimal structures: acyclicity of the infinitesimal subgroup. J. Symbolic Logic, 74(3):891-900, 2009.

    [5] Alessandro Berarducci, Mário Edmundo, and Marcello Mamino. Discrete subgroups of locally definable groups. Selecta Math. (N.S.), 19(3):719-736, 2013.

    [6] Hans Delfs and Manfred Knebusch. Locally semialgebraic spaces, volume 1173 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1985.

    [7] Mário J. Edmundo. Covers of groups definable in o-minimal structures. Illinois J. Math., 49(1):99-120 (electronic), 2005.

    [8] Mário J. Edmundo. Erratum to: “Covers of groups definable in o-minimal structures” [Illinois J. Math. 49 (2005), no. 1, 99-120]. Illinois J. Math., 51(3):1037-1038, 2007.

    [9] Mário J. Edmundo and Pantelis E. Eleftheriou. The universal covering homomorphism in o-minimal expansions of groups. MLQ Math. Log. Q., 53(6):571-582, 2007.

    [10] Mário J. Edmundo, Pantelis E. Eleftheriou, and Luca Prelli. The universal covering map in o-minimal expansions of groups. Topology Appl., 160(13):1530-1556, 2013.

  • Similar Research Results (4)
  • Metrics
    No metrics available
Share - Bookmark