Share  Bookmark

 Download from



[1] J.L. Anderson. Spatially and temporally varying adaptive covariance in ation for ensemble lters. Tellus, 61(A):72{83, 2009.
[2] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle lters for online nonlinear/nonGaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174 {188, 2002.
[3] E. Atkins, M. Morzfeld, and A.J. Chorin. Implicit particle methods and their connection with variational data assimilation. Monthly Weather Review, 141:1786{1803, 2013.
[4] J.M. Bardsley, A. Solonen, H. Haario, and M. Laine. Randomizethenoptimize: A method for sampling from posterior distributions in nonlinear inverse problems. SIAM Journal on Scienti c Computing, 36(4):A1895{A1910, 2014.
[5] T. Bengtsson, P. Bickel, and B. Li. Curse of dimensionality revisited: the collapse of importance sampling in very large scale systems. IMS Collections: Probability and Statistics: Essays in Honor of David A. Freedman, 2:316{334, 2008.
[6] N. Bergman, editor. Recursive Bayesian estimation: Navigation and tracking applications. Ph.D Dissertation, Linkoping University, Linkoping, Sweden, 1999.
[7] A. Beskos, A. Jasra, E. Muza er, and A.M. Stuart. Sequential Monte Carlo methods for Bayesian elliptic inverse problems. Stat. Comp., 25:727{737, 2015.
[8] P. Bickel, T. Bengtsson, and J. Anderson. Sharp failure rates for the bootstrap particle lter in high dimensions. Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, 3:318{329, 2008.
[9] C.J.F. Ter Braak. A Markov chain Monte Carlo version of the genetic algorithm Di erential Evolution: easy Bayesian computing for real parameter spaces. Statistics and Computing, 16(3):239{249, 2006.
[10] C.J.F. Ter Braak and A.A. Vrugt. Di erential evolution markov chain with snooker updater andfewer chains. Statistics and Computing, 18(4):435{446, 2008.