publication . Preprint . Article . 2018

A Stochastic Lagrangian Basis for a Probabilistic Parameterization of Moisture Condensation in Eulerian Models

Yue-Kin Tsang; Geoffrey K. Vallis;
Open Access English
  • Published: 23 Feb 2018
Abstract
<jats:title>Abstract</jats:title> <jats:p>In this paper, we describe the construction of an efficient probabilistic parameterization that could be used in a coarse-resolution numerical model in which the variation of moisture is not properly resolved. An Eulerian model using a coarse-grained field on a grid cannot properly resolve regions of saturation—in which condensation occurs—that are smaller than the grid boxes. Thus, in the absence of a parameterization scheme, either the grid box must become saturated or condensation will be underestimated. On the other hand, in a stochastic Lagrangian model of moisture transport, trajectories of parcels tagged with humi...
Subjects
free text keywords: Physics - Atmospheric and Oceanic Physics, Physics - Fluid Dynamics, Physics - Geophysics, Atmospheric Science, Probabilistic logic, Eulerian path, symbols.namesake, symbols, Parametrization, Moisture, Lagrangian, Environmental science, Water vapor, Condensation, Applied mathematics, Stochastic modelling
Related Organizations
Funded by
RCUK| Past Earth Network
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: EP/M008363/1
  • Funding stream: EPSRC
38 references, page 1 of 3

Beucler, T., 2016: A correlated stochastic model for the large-scale advection, condensation and diffusion of water vapour. Q. J. R. Meteorol. Soc., 142, 1721-1731. [OpenAIRE]

Bogenschutz, P. A., and S. K. Krueger, 2013: A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models. J. Adv. Model. Earth Syst., 5, 195-211. [OpenAIRE]

Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046-1053.

Bougeault, Ph., 1982: Modeling the trade-wind cumulus boundary layer. Part I: Testing the ensemble cloud relations against numerical data. J. Atmos. Sci., 38, 2414-2428.

Dessler, A. E., and K. Minschwaner, 2007: An analysis of the regulation of tropical tropospheric water vapor. J. Geophys. Res., 112, D10 120. [OpenAIRE]

Dritschel, D. G., S. J. Böing, D. J. Parker, and A. M. Blyth, 2017: The moist parcel-in-cell method for modelling moist convection. Q. J. R. Meteorol. Soc, submitted. [OpenAIRE]

Galewsky, J., A. Sobel, and I. Held, 2005: Diagnosis of subtropical humidity dynamics using tracers of last saturation. J. Atmos. Sci., 62, 3353-3367. [OpenAIRE]

Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 3540-3551.

Goulart, A., M. Lazo, J. Suarez, and D. Moreira, 2017: Fractional derivative models for atmospheric dispersion of pollutants. Physica A: Statistical Mechanics and its Applications, 477, 9-19.

Haynes, P., and J. Anglade, 1997: The vertical-scale cascade in atmospheric tracers due to large-scale differential advection. J. Atmos. Sci., 54, 1121-1136. [OpenAIRE]

Hernandez-Duenas, G., A. J. Majda, L. M. Smith, and S. N. Stechmann, 2013: Minimal models for precipitating turbulent convection. J. Fluid Mech., 717, 576-611.

Higham, D. J., 2001: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43 (3), 525-546.

Jakob, C., and M. Miller, 2002: Parameterization of physical processes: Clouds. Encyclopedia of Atmospheric Sciences, J. A. Curry, and J. A. Pyle, Eds., 1st ed., Elsevier, 1692-1698.

Kuwano-Yoshida, A., T. Enomoto, and W. Ohfuchi, 2010: An improved PDF cloud scheme for climate simulations. Q. J. R. Meteorol. Soc., 136, 1583-1597. [OpenAIRE]

Lappen, C.-L., and D. A. Randall, 2001: Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model. J. Atmos. Sci., 58 (15), 2021-2036.

38 references, page 1 of 3
Any information missing or wrong?Report an Issue