## Nonlinear degenerate cross-diffusion systems with nonlocal interaction

*Di Francesco, M.*;

*Esposito, A.*;

*Fagioli, S.*;

- Subject: Mathematics - Analysis of PDEs

- References (58)
[1] H. Amann. Dynamic theory of quasilinear parabolic systems. III. Global existence, Math. Z. 202 (1989), 219-250.

[2] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zu¨rich. Birkha¨user Verlag, Basel, 2005.

[3] L. Ambrosio, G. Savaré, Gradient flows of probability measures, Handbook of differential equations: evolutionary equations, Vol. III, Handb. Differ. Equ., pages 1-136, Elsevier/North-Holland, Amsterdam, 2007.

[4] C. Appert-Rolland, P. Degond, and S. Motsch. Two-way multi-lane traffic model for pedestrians in corridors, Netw. Heterog. Media 6 (2011), no. 3, 351-381.

[5] M. Bertsch, D. Hilhorst, H. Izuhara, and M. Mimura. A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth, Differential Equations and Applications, 4 (2012), 137-157.

[6] F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory, On nonlocal conservation laws modeling sedimentation, Nonlinearity 24 (2011), no. 3, 855-885

[7] A. Blanchet, J. Dolbeault, and B. Perthame. Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differential Equations (2006), no. 44, p.33.

[8] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.

[9] M. Bruna, and S. J. Chapman. Diffusion of multiple species with excluded-volume effects, Journal of Chemical Physics 137 (2012), no. 20.

[10] M. Burger, M. Di Francesco, S. Fagioli, and A. Stevens, Sorting Phenomena in a Mathematical Model For Two Mutually Attracting/Repelling Species - Submitted preprint (arxiv 1704.04179).

- Metrics No metrics available

- Download from

- Cite this publication