# Global solvability, non-resistive limit and magnetic boundary layer of the compressible heat-conductive MHD equations

- Published: 13 Oct 2015

- 1
- 2

[1] H. Alfv´en, Existence of electromagnetic-hydrodynamic waves. Nature 150 (1942), 405-406.

[2] A. A. Amosov, A. A. Zlotnik, A difference scheme on a non-uniform mesh for the equations of onedimensional magneticgasdynamics. U.S.S.R. Compu. Maths. Math. Phys., 29(2) (1990), 129-139.

[3] J.A. Bittencourt, Fundamentals of Plasma Physics 3rd. New York: Spinger-Verlag, 2004.

[4] T.J.M. Boyd, J.J. Sanderson, The Physics of Plasmas. Cambridge: Cambridge Univ. Press, 2003.

[5] H. Cabannes, Theoretical Magnetofluiddynamics. New York: Academic Press, 1970.

[6] G.-Q. Chen, D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data. J. Differential Equations, 182 (2002), 344-376.

[7] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. Oxford: Oxford Univ. Press, 1961.

[8] G.-Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations. Z. Angew. Math. Phys., 54 (2003), 608-632.

[9] J. Fan, Y. Hu, Global strong solutions to the 1-D compressible magnetohydrodynamic equations with zero resistivity. J. Math. Phys., 56 (2015), 023101.

[10] J.P. Freidberg, Ideal Magnetohydrodynamic Theory of Magnetic Fusion Systems. Rev. Modern Physics Vol. 54, No 3, The American Physical Society, 1982.

[11] H. Frid, V. V. Shelukhn, Boundary layer for the Navier-Stokes equations of compressible fluids. Commun. Math. Phys., 208 (1999), 309-330. [OpenAIRE]

[13] R.D. Hazeltine, J.D. Meiss, Plasma Confinement. Addison-Wesley, 1992.

[14] D.A. Iskenderova, An initial-boundary value problem for magnetogasdynamic equations with degenerate density. Differetial Eqns., 36 (2000), 847-856.

[15] S. Jiang, J. W. Zhang, Boundary layers for the Navier-Stokes equations of compressible heatconducting flows with cylindrical symmetry. SIAM J. Math. Anal., 41 (2009), 237-268.

[24] F. Lin, T. Zhang, Global small solutions to a complex fluid model in three dimensional. Arch. Ration. Mech. Anal., 216 (2015), 905-920.

- 1
- 2