Test Particles with Acceleration-Dependent Lagrangian

Preprint English OPEN
Toller, M.;
(2005)

We consider a classical test particle subject to electromagnetic and gravitational fields, described by a Lagrangian depending on the acceleration and on a fundamental length. We associate to the particle a moving local reference frame and we study its trajectory in the... View more
  • References (29)
    29 references, page 1 of 3

    [1] F. W. Hehl, P. von der Heyde, G. D. Kerlick and J. M. Nester: General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 48 (1976) 393.

    [2] E. R. Caianiello: Is There a Maximal Acceleration? Lett. Nuovo Cimento 32 (1981) 65.

    [3] E. R. Caianiello, S. De Filippo, G. Marmo and G. Vilasi: Remarks on the Maximal Acceleration Hypothesis. Lett. Nuovo Cimento 34 (1982) 112.

    [4] H. E. Brandt: Maximal Proper Acceleration Relative to Vacuum. Lett. Nuovo Cimento 38 (1983) 522.

    [5] G. Scarpetta: Relativistic Kinematics with Caianiello's Maximal Proper Acceleration. Lett. Nuovo Cimento 41 (1984) 51.

    [6] H. E. Brandt: Maximal Proper Acceleration and the Structure of Spacetime. Found. Phys. Lett. 2 (1989) 39.

    [7] A. Feoli, G. Lambiase, G. Papini and G. Scarpetta: Classical Electrodynamics of a Particle with Maximal Acceleration Corrections. Nuovo Cimento 112 B (1997) 913, hep-th/9702131.

    [8] F. P. Schuller: Born-Infeld Kinematics. Annals Phys. 299 (2002) 174, hep-th/0203079.

    [10] G. Papini: Revisiting Caianiello's Maximal Acceleration. Nuovo Cimento 117 B (2003) 1325, quant-ph/0301142.

    [11] M. Toller: Geometries of Maximal Acceleration. hep-th/0312016.

  • Metrics
Share - Bookmark