publication . Preprint . 2018

A note on quasi-local energy

Alvarez, Enrique; Anero, Jesus; del Bosch, Guillermo Milans; Santos-Garcia, Raquel;
Open Access English
  • Published: 08 Nov 2018
Abstract
Comment: 12 pages
Subjects
arXiv: Mathematics::Metric Geometry
free text keywords: High Energy Physics - Theory, General Relativity and Quantum Cosmology
Funded by
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
,
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
Download from

[1] E. Alvarez, “Quantum Gravity: A Pedagogical Introduction To Some Recent Results,” Rev. Mod. Phys. 61, 561 (1989). doi:10.1103/RevModPhys.61.561

[2] L. B. Szabados, “Quasi-Local Energy-Momentum and Angular Momentum in General Relativity,” Living Rev. Rel. 12, 4 (2009). doi:10.12942/lrr-2009-4

[3] E. Alvarez, J. Anero, G. Milans Del Bosch and R. Santos-Garcia, JHEP 1806 (2018) 069 doi:10.1007/JHEP06(2018)069 [arXiv:1805.00963 [hep-th]].

[4] S. Hawking, “Gravitational radiation in an expanding universe,” J. Math. Phys. 9, 598 (1968). doi:10.1063/1.1664615 [OpenAIRE]

[5] R. Penrose, “Quasi-Local Mass and Angular Momentum in General Relativity,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 381, no. 1780, 1982, pp. 53-63.

[6] R. Bartnik, “New definition of quasilocal mass,” Phys. Rev. Lett. 62, 2346 (1989). doi:10.1103/PhysRevLett.62.2346

[7] J. D. Brown and J. W. York, Jr., doi:10.1103/PhysRevD.47.1407 [gr-qc/9209012].

[8] S. A. Hayward, “Quasilocal gravitational energy,” Phys. Rev. D 49, 831 (1994) doi:10.1103/PhysRevD.49.831 [gr-qc/9303030].

[9] C. C. M. Liu and S. T. Yau, “Positivity of Quasilocal Mass,” Phys. Rev. Lett. 90, 231102 (2003) doi:10.1103/PhysRevLett.90.231102 [gr-qc/0303019].

[10] M. T. Wang and S. T. Yau, “Quasilocal mass in general relativity,” Phys. Rev. Lett. 102, 021101 (2009) doi:10.1103/PhysRevLett.102.021101 [arXiv:0804.1174 [gr-qc]].

[11] A. Friedman, “Isometric embedding of Riemannian manifolds into euclidean spaces” Rev. Mod. Phys. 37, 201 (1965) J. A. Schouten and D. J. Struik, ”On Some Properties of General Manifolds Relating to Einstein's Theory of Gravitation” American Journal of Mathematics,Vol. 43, No. 4 (Oct., 1921), pp. 213-216

[12] T. Regge and C. Teitelboim, “General Relativity `a la string: a progress report,” arXiv:1612.05256 [hep-th]. D. A. Grad, R. V. Ilin, S. A. Paston and A. A. Sheykin, “Gravitational energy in the framework of embedding and splitting theories,” Int. J. Mod. Phys. D 27 (2017) no.02, 1750188 doi:10.1142/S0218271817501887 [arXiv:1707.01074 [gr-qc]].

[13] C. Fronsdal, “Completion and Embedding of the Schwarzschild Solution,” Phys. Rev. 116, 778 (1959). doi:10.1103/PhysRev.116.778 [OpenAIRE]

[14] G. Lemaitre (1933). “L'Univers en expansion”. Annales de la Socit Scientifique de Bruxelles. A53: 5185

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue