publication . Article . Preprint . 2003

Random walk through fractal environments

Heinz Isliker; Vlahos, L.;
  • Published: 01 Jan 2003
Abstract
Comment: 22 pages, 16 figures; in press at Phys. Rev. E, 2002
Subjects
free text keywords: Fractal dimension, Jump, Continuous-time random walk, Physics, Escape rate, Heterogeneous random walk in one dimension, Fractal, Monte Carlo method, Mathematical analysis, Random walk, Physics - Plasma Physics, Physics - Space Physics
23 references, page 1 of 2

[1] E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965).

[2] P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987); P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38, 364 (1988).

[3] H. Isliker, L. Vlahos, (2001) (unpublished result); S.W. McIntosh, P. Charbonneau, T.J. Bogdan, H.-L. Liu, J.P. Norman, Phys. Rev. E 65, 6125 (2002).

[4] H. Isliker, A. Anastasiadis, L. Vlahos, Astron. and Astrophys. 363, 1134 (2000); H. Isliker, A. Anastasiadis, L. Vlahos, Astron. and Astrophys. 377, 1068 (2001).

[5] T.E. Lu, R.J. Hamilton, Ap. J. 380, L89 (1991); T.E. Lu, R.J. Hamilton, J.M. McTiernan, K.R. Bromund, Ap. J. 412, 841 (1993); L. Vlahos, M. Georgoulis, R. Kluiving, P. Paschos, Astron. and Astrophys. 299, 897 (1995).

[6] S. Chapman, N. Watkins, Space Science Reviews 95, 293 (2001).

[7] P.M. Drysdale, P.A. Robinson, Phys. Rev. E 58, 5382 (1998).

[8] M.F. Shlesinger, B.J. West, J. Klafter, Phys. Rev. Lett. 58, 1100 (1987).

[9] P.A. Politzer, Phys. Rev. Lett. 84, 1192 (2000); S.C. Chapman, R.O. Dendy, B. Hnat, Phys. Rev. Lett. 86, 2814 (2001); B.A. Carreras, D. Newman, V.E. Lynch, P.H. Diamond, Phys. of Plasmas 3, 2903 (1996).

[10] E. Spada et al., Phys. Rev. Lett. 86, 3032 (2001); V. Antoni et al., Phys. Rev. Lett. 87, 5001 (2001).

[11] R. Balescu, Phys. Rev. E 51, 4807 (1995); E. Barkai, J. Klafter, in Lecture Notes in Phys. 511, edited by S. Benkadda, G.M. Zaslavsky, (Springer-Verlag, Berlin, 1998), p. 373; G. Zimbardo, A. Greco, P. Veltri, Phys. of Plasmas 7, 1071 (2000).

[12] P. Bak, K. Chen, Phys. Rev. Lett. 86, 4215 (2001);

[13] B. O'Shaughnessy, I. Procaccia, Phys. Rev. Lett. 54, 455 The Laplace transform of ϕ(τ ) (Secs. IV B and V B) is given by Eq. (B20). In the case DF > 2, the function λ(t) is given by Eq. (B34), with the expressions B(n)(s) for s → 0 evaluated according to Eq. (B36). In the case DF < 2, λ(t) is given by Eq. (B37), and again Eq. (B20) yields the Laplace transform of ϕ(t), by using Eqs. (B41) or (B45) to determine B(n)(s) for s → 0. (1985); B. O'Shaughnessy, I. Procaccia, Phys. Rev. A 32, 3073 (1985); A. Blumen, J. Klafter, G. Zumofen, Phys. Rev. B 28, 6112 (1983); L. Acedo, S.B. Yuste, Phys. Rev. E 57, 5160 (1998).

[14] B.A. Carreras, V.E. Lynch, D.E. Newman, G.M. Zaslavsky, Phys. Rev. E 60, 4770 (1999); P. Ba´ntay, I.M. Ja´nosi, Phys. Rev. Lett. 68, 2058 (1992); M. Bogun˜a´, A´ . Corral, Phys. Rev. Lett. 78, 4950 (1997).

[15] B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982).

23 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2003

Random walk through fractal environments

Heinz Isliker; Vlahos, L.;