TensorFlow Agents: Efficient Batched Reinforcement Learning in TensorFlow

Preprint English OPEN
Hafner, Danijar; Davidson, James; Vanhoucke, Vincent;
  • Subject: Computer Science - Machine Learning | Computer Science - Artificial Intelligence

We introduce TensorFlow Agents, an efficient infrastructure paradigm for building parallel reinforcement learning algorithms in TensorFlow. We simulate multiple environments in parallel, and group them to perform the neural network computation on a batch rather than ind... View more
  • References (14)
    14 references, page 1 of 2

    [1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensor ow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

    [2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai gym, 2016.

    [3] L. Dalcin. Mpi for python: Python bindings for mpi. https://github.com/ mpi4py/mpi4py, 2017.

    [4] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement learning for continuous control. In International Conference on Machine Learning, pages 1329{1338, 2016.

    [5] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung. Digital selection and analogue ampli cation coexist in a cortex-inspired silicon circuit. Nature, 405(6789):947, 2000.

    [6] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, A. Eslami, M. Riedmiller, et al. Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286, 2017.

    [7] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

    [8] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International Conference on Machine Learning, pages 1928{1937, 2016.

    [9] J. Schulman. Modular rl: Implementation of trpo and related algorithms. https://github.com/joshu/modular_rl, 2017.

    [10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

  • Related Research Results (1)
  • Metrics
Share - Bookmark