publication . Preprint . 2015

An EKF-SLAM algorithm with consistency properties

Barrau, Axel; Bonnabel, Silvere;
Open Access English
  • Published: 21 Oct 2015
Comment: Submitted
arXiv: Computer Science::Robotics
free text keywords: Computer Science - Robotics, Computer Science - Systems and Control
Related Organizations
Download from
22 references, page 1 of 2

[2] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot. Consistency of the EKF-SLAM algorithm. In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages 3562-3568. IEEE, 2006. [OpenAIRE]

[3] Y. Bar-Shalom, X. R. Li, and T Kirubarajan. Estimation with Applications to Tracking and Navigation. New York, Wiley, 2001.

[4] M. Barczyk, S. Bonnabel, J.-E. Deschaud, and Franc¸ois Goulette. Invariant EKF design for scan matching-aided localization. Control Systems Technology, IEEE Transactions on, 23(6):2440-2448, 2015.

[7] A.Barrau and S. Bonnabel. Alignment method for an inertial unit, 2014. SAGEM/ARMINES. EP 2014/075439, WO/2015/075248.

[8] A. Barrau and S. Bonnabel. The invariant extended Kalman filter as a stable observer. Automatic Control, IEEE Transactions on, Accepted and scheduled to appear in the 2017 May issue. arXiv preprint arXiv:1410.1465, 2014.

[10] S. Bonnabel. Left-invariant extended Kalman filter and attitude estimation. In IEEE Conference on Decision and Control, pp. 1027-1032, 2007.

[11] S. Bonnabel, P. Martin, and E. Salaun. Invariant Extended Kalman Filter: Theory and application to a velocity-aided attitude estimation problem. In IEEE Conference on Decision and Control, pp. 1297 - 1304, 2009. [OpenAIRE]

[12] S. Bonnabel, Ph. Martin, and P. Rouchon. Symmetry-preserving observers. Automatic Control, IEEE Transactions on, 53(11):2514-2526, 2008. [OpenAIRE]

[13] S. Bonnabel. Symmetries in observer design: Review of some recent results and applications to EKF-based SLAM. In Robot Motion and Control 2011, pages 3-15. Springer, 2012. [OpenAIRE]

[14] J. A. Castellanos, J. Neira, and J. D. Tardo´s. Limits to the consistency of EKFbased SLAM. In IFAC Symposium on Intelligent Autonomous Vehicles, pp. 1244- 1249. 2004.

[15] J. A. Castellanos, R. Martinez-Cantin, J. Tardos,and J. Neira. Robocentric map joining: Improving the consistency of EKF-SLAM. Robotics and Autonomous Systems, 55(1): 21- 29, 2007.

[23] G. P. Huang, A. Mourikis, St. Roumeliotis. An observability-constrained sliding window filter for SLAM. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages 65-72. IEEE, 2011.

[24] G. P. Huang, A. I. Mourikis, and S. I Roumeliotis. Analysis and improvement of the consistency of extended Kalman filter based SLAM. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages 473-479. IEEE, 2008. [OpenAIRE]

[25] S. Huang, Z. Wang, and G. Dissanayake. Sparse local submap joining filter for building large-scale maps. newblock In IEEE Transactions on Robotics, 24(5), pp 1121-1130, 2008.

[26] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis. Observability-based rules for designing consistent EKF SLAM estimators. The International Journal of Robotics Research, 29(5):502-528, 2010.

22 references, page 1 of 2
Any information missing or wrong?Report an Issue