Finite translation surfaces with maximal number of translations

Preprint English OPEN
Schlage-Puchta, Jan-Christoph; Weitze-Schmithuesen, Gabriela;
  • Subject: Mathematics - Group Theory | 14H30, 53C10, 32G15 | Mathematics - Geometric Topology
    arxiv: Mathematics::Algebraic Geometry | Mathematics::Number Theory

The natural automorphism group of a translation surface is its group of translations. For finite translation surfaces of genus g > 1 the order of this group is naturally bounded in terms of g due to a Riemann-Hurwitz formula argument. In analogy with classical Hurwitz s... View more
  • References (22)
    22 references, page 1 of 3

    [Acc68] Robert D.M. Accola, On the number of automorphisms of a closed Riemann surface, Trans. Am. Math. Soc. 131 (1968), 398-408.

    [Con90] Marston Conder, Hurwitz groups: A brief survey, Bull. Am. Math. Soc., New Ser. 23 (1990), no. 2, 359-370.

    [EG97] Clifford Earle and Frederick Gardiner, Teichmu¨ller disks and veech's F-structures, Quine, J. R. (ed.) et al., Extremal Riemann surfaces. From the proceedings of the AMS special session with related papers, January 4-5, 1995, San Francisco, CA, USA. Providence, RI: American Mathematical Society. Contemp. Math. 201, 1997, pp. 165-189.

    [For06] Giovanni Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle, Hasselblatt, B.(ed.) et al., Handbook of dynamical systems. Volume 1B. Amsterdam: Elsevier. 549-580, 2006.

    [Hal64] Marshall Hall, Jr., The theory of groups, New York: The Macmillan Company XIII, 1964.

    [HS06] Pascal Hubert and Thomas Schmidt, An introduction to Veech surfaces, Handbook of dynamical systems 1B (2006), 501-526.

    [HS07] Frank Herrlich and Gabriela Schmithu¨sen, On the boundary of Teichmu¨ller disks in Teichmu¨ller and in Schottky space, Papadopoulos, Athanase (ed.), Handbook of Teichmu¨ller theory. Volume I. Zu¨rich: European Mathematical Society (EMS). IRMA Lectures in Mathematics and Theoretical Physics 11, 293-349, 2007.

    [HS08] , An extraordinary origami curve, Math. Nachr. 281 (2008), no. 2, 219-237.

    [Hup67] Bertram Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. 134. Berlin-Heidelberg-New York: Springer-Verlag. XII, 1967.

    [Hur93] Adolf Hurwitz, On Riemann surfaces with monogenic transformations into themselves (Ueber algebraische Gebilde mit eindeutigen Transformationen in sich), Math. Ann. XLI (1893), 403-442.

  • Metrics
Share - Bookmark