A Quantum Approach to SubsetSum and Similar Problems

Subject: Computer Science  Computational Complexity  Computer Science  Data Structures and Algorithms  Quantum Physics

References
(10)
[1] D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation, SIAM review, 50 (2008), pp. 755787.
[2] A. Ambainis, A better lower bound for quantum algorithms searching an ordered list, in Foundations of Computer Science, 1999. 40th Annual Symposium on, IEEE, 1999, pp. 352357.
[3] A. Ambainis, Quantum walk algorithm for element distinctness, SIAM Journal on Computing, 37 (2007), pp. 210239.
[4] D. Bacon and W. VAn DAm, Recent progress in quantum algorithms, Communications of the ACM, 53 (2010), pp. 8493.
[5] A. M. Childs and J. M. Eisenberg, Quantum algorithms for subset finding, Quantum Info. Comput., 5 (2005), pp. 593604, http://dl.acm.org/citation.cfm?id=2011656.2011663.
[6] A. M. Childs and W. Van Dam, Quantum algorithms for algebraic problems, Reviews of Modern Physics, 82 (2010), p. 1.
[7] C. Durr and P. Hoyer, A quantum algorithm for finding the minimum, arXiv preprint quantph/9607014, (1996).
[8] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv preprint arXiv:1411.4028, (2014).
[9] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, A quantum adiabatic evolution algorithm applied to random instances of an npcomplete problem, Science, 292 (2001), pp. 472475.
[10] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum computation by adiabatic evolution, arXiv preprint quant

Similar Research Results
(8)

Metrics
No metrics available

 Download from


Cite this publication