## Locally Finite Root Supersystems

*Yousofzadeh, Malihe*;

- Subject: 17B22, 17B65 | Mathematics - Representation Theory | Mathematics - Quantum Algebra

- References (17) 17 references, page 1 of 2
- 1
- 2

[1] S. Azam, H. Yamane and M. Yousofzadeh, Reflectable bases for affine reflection systems, J. Algebra 371 (2012) 63-93.

[2] B.N. Allison, G. Benkart and Y. Gao, Lie algebras graded by the root systems BCr, r ≥ 2, Mem. Amer. Math. Soc. 158 (2002), no. 751, x+158.

[3] G. Benkart and E. Zelmanov, Lie algebras graded by finite root systems and intersection matrix algebras, Invent. Math. 126 (1996), no. 1, 1-45.

[4] G. Benkart and O. Smirnov, Lie algebras graded by the root system BC1, J. Lie theory, 13 (2003), 91-132.

[5] S. Berman and R. Moody, Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy, Invent. Math. 108 (1992), no. 2, 323-347.

[6] V. Kac, Lie superalgebras, Adv. Math 26 (1977), 8-96.

[7] O. Loos, E. Neher, Locally finite root systems, Mem. Amer. Math. Soc. 171 (2004), no. 811, x+214.

[8] O. Loos, E. Neher, Reflection systems and partial root systems, Forum Math. 23 (2011), no. 2, 349-411.

[9] J. Morita and Y. Yoshii, Locally extended affine Lie algebras, J. Algebra 301 (1) (2006) 59-81.

[10] K.H. Neeb and N. Stumme, The classification of locally finite split simple Lie algebras, J. Reine angew. Math. 533 (2001), 25-53.

- Similar Research Results (3)
- Metrics 2views in OpenAIRE0views in local repository0downloads in local repository

- Download from

- Cite this publication