On MITL and alternating timed automata

Subject: Computer Science  Formal Languages and Automata Theory  Computer Science  Logic in Computer Scienceacm: TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESarxiv: Computer Science::Formal Languages and Automata Theory  Computer Science::Logic in Computer Science

References
(13)
13 references, page 1 of 2
 1
 2
[1] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183235, 1994.
[2] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. J. ACM, 43(1):116146, 1996.
[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 1020 states and beyond. Inf. Comput., 98(2):142170, 1992.
[4] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 2001.
[5] M. De Wulf, L. Doyen, N. Maquet, and J.F. Raskin. Antichains: Alternative algorithms for LTL satisfiability and modelchecking. In TACAS, volume 4963 of LNCS. Springer, 2008.
[6] L. Doyen and J.F. Raskin. Antichain algorithms for finite automata. In TACAS, volume 6015 of LNCS. Springer, 2010.
[7] T. A. Henzinger. The temporal specification and verification of realtime systems. PhD thesis, Standford University, 1991.
[8] R. Koymans. Specifying realtime properties with metric temporal logic. RealTime Systems, 2(4):255299, 1990.
[9] S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans. Comput. Log., 9(2), 2008.
[10] O. Maler, D. Nickovic, and A. Pnueli. From mitl to timed automata. In FORMATS, volume 4202 of LNCS. Springer, 2006.

Similar Research Results
(20)
20 research results, page 1 of 2
 1
 2

Metrics
No metrics available

 Download from


Cite this publication