publication . Preprint . 2010

An Elementary Proof of the Polynomial Matrix Spectral Factorization Theorem

Ephremidze, Lasha;
Open Access English
  • Published: 16 Nov 2010
A very simple and short proof of the polynomial matrix spectral factorization theorem (on the unit circle as well as on the real line) is presented, which relies on elementary complex analysis and linear algebra.
free text keywords: 47A68, Mathematics - Complex Variables
Download from

[1] F. Callier, ”On polynomial matrix spectral factorization by symmetric extraction”, IEEE Trans. Autom. Control, vol. 30, pp. 453-464, 1985.

[2] P. Delsarte, Y. Gelin, and Y. Kamp, “A simple approach to spectral factorization”, IEEE Trans. Circuits Syst.,vol. 25, pp. 943-946, 1978.

[3] L. Ephremidze, G. Janashia, and E. Lagvilava, “A simple proof of matrix-valued Fej´er-Riesz theorem”, J. Fourier Anal. Appl. vol. 14, pp. 124-127, 2009 (DOI: 10.1007/s00041-008-9051-z).

[4] D. P. Hardin, T. A. Hogan and Q. Sun, ”The matrix-valued Riesz lemma and local orthonormal bases in shift-invariant spaces”, Adv. Comput. Math., vol. 20, pp. 367-384, 2004.

[5] G. Janashia, E. Lagvilava, and L. Ephremidze “A new method of matrix spectral factorization”, to appear in IEEE Trans. Inform. Theory.

[6] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, Prentice Hall, Inc. 2000.

[7] M. Rosenblatt, “A multidimensional prediction problem”, Ark. Mat. vol. 3, pp. 407-424, 1958. [OpenAIRE]

[8] N. Wiener and P. Masani, “The prediction theory of multivariate stochastic processes”, Acta Math., vol. 98, pp. 111-150, 1957. [OpenAIRE]

[9] D. C. Youla, ”On the factorization of rational matrices”, IRE Trans. Informat. Theory, vol. IT-7, pp. 172-189, 1961.

A. Razmadze Mathematical Institute I. Javakhishvili State University 2, University Street, Tbilisi 0143 Georgia E-mail address:

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue