## Error bounds in local limit theorems using Stein's method

Preprint English OPEN
Barbour, A. D. ; Röllin, Adrian ; Ross, Nathan (2017)
• Subject: Mathematics - Probability

We provide a general result for bounding the difference between point probabilities of integer supported distributions and the translated Poisson distribution, a convenient alternative to the discretized normal. We illustrate our theorem in the context of the Hoeffding combinatorial central limit theorem with integer valued summands, of the number of isolated vertices in an Erd\H{o}s-R\'enyi random graph, and of the Curie-Weiss model of magnetism, where we provide optimal or near optimal rates of convergence in the local limit metric. In the Hoeffding example, even the discrete normal approximation bounds seem to be new. The general result follows from Stein's method, and requires a new bound on the Stein solution for the Poisson distribution, which is of general interest.
• References (33)
33 references, page 1 of 4

R. Arratia and P. Baxendale (2015). Bounded size bias coupling: a Gamma function bound, and universal Dickman-function behavior. Probab. Theory Related Fields, 162(3-4):411- 429.

A. D. Barbour (1980). Equilibrium distributions for Markov population processes. Adv. Appl. Prob., 12:591-614.

A. D. Barbour and A. Xia (1999). Poisson perturbations. ESAIM Probab. Statist., 3:131-150.

A. D. Barbour, L. Holst and S. Janson (1992). Poisson approximation, volume 2 of Oxford Studies in Probability. The Clarendon Press Oxford University Press, New York. Oxford Science Publications.

A. D. Barbour, M. Karon´ski and A. Rucin´ski (1989). A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B 47, 125-145.

E. Bolthausen (1984). An estimate of the remainder in a combinatorial central limit theorem. Z. Wahrsch. Verw. Gebiete, 66(3):379-386.

S. Chatterjee (2007). Stein's method for concentration inequalities. Probab. Theory Related Fields, 138(1-2):305-321.

S. Chatterjee and P. S. Dey (2010). Applications of Stein's method for concentration inequalities. Ann. Probab., 38(6):2443-2485.

S. Chatterjee and Q.-M. Shao (2011). Nonnormal approximation by Stein's method of exchangeable pairs with application to the Curie-Weiss model. Ann. Appl. Probab., 21(2):464-483.

L. H. Y. Chen and X. Fang (2015). On the error bound in a combinatorial central limit theorem. Bernoulli, 21(1):335-359.

• Metrics
No metrics available
Share - Bookmark