publication . Article . Preprint . 2005

Properties making a chaotic system a good pseudo random number generator

Falcioni, Massimo; Palatella, Luigi; Pigolotti, Simone; Vulpiani, Angelo;
Open Access
  • Published: 29 Jul 2005 Journal: Physical Review E, volume 72 (issn: 1539-3755, eissn: 1550-2376, Copyright policy)
  • Publisher: American Physical Society (APS)
Abstract
We discuss two properties making a deterministic algorithm suitable to generate a pseudo random sequence of numbers: high value of Kolmogorov-Sinai entropy and high-dimensionality. We propose the multi dimensional Anosov symplectic (cat) map as a Pseudo Random Number Generator. We show what chaotic features of this map are useful for generating Pseudo Random Numbers and investigate numerically which of them survive in the discrete version of the map. Testing and comparisons with other generators are performed.
Subjects
free text keywords: Statistics and Probability, Statistical and Nonlinear Physics, Condensed Matter Physics, Applied mathematics, Random graph, Pseudorandom number generator, Random field, Discrete mathematics, Random element, Convolution random number generator, Random permutation, Mathematics, Random function, Stochastic simulation, Classical mechanics, Nonlinear Sciences - Chaotic Dynamics, Condensed Matter - Statistical Mechanics, Nonlinear Sciences - Cellular Automata and Lattice Gases
Related Organizations
36 references, page 1 of 3

[1] J. Von Neumann, in John Von Neumann, Collected Works, volume V. A.H. Taub editor, MacMillan Co., New York (1963).

[2] E. Lorenz, J. Atmos. Sci. 20, 130 (1963).

[3] M. H´enon, Commun. Math. Phys. 50, 69 (1976).

[4] F.Takens, In Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics 898, 366, Springer-Verlag, (1980).

[5] H.D.I. Abarbanel Analysis of Observed Chaotic Data, Springer-Verlag, New York (1996); H. Kantz, and T. Schreiber, Nonlinear Time-series Analysis, Cambridge University Press, Cambridge UK (1997). [OpenAIRE]

[6] L. Smith, Phys. Lett. A 133, 283 (1988); J.-P. Eckmann, and D. Ruelle, Physica D 56, 185 (1992).

[7] M. Cencini, M. Falcioni, H. Kantz, E. Olbrich, and A. Vulpiani, Phys. Rev. E 62, 427 (2000). [OpenAIRE]

[8] R. Benzi, L. Biferale, A. Crisanti, G. Paladin, M. Vergassola, and A. Vulpiani Physica D 65, 352 (1993). [OpenAIRE]

[9] H. Kantz, and E. Olbrich, Physica A 280, 34 (2000).

[10] J.-P. Eckmann, and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).

[11] M. Falcioni, A. Vulpiani, G. Mantica, and S. Pigolotti, Phys. Rev. Lett. 91, 044101 (2003).

[12] B. V. Chirikov, in Laws and Prediction in the Light of Chaos Research, Pag. 10, ed.s P. Weingartner and G. Schurz, Springer-Verlag, Berlin (1996); G.Mantica, Phys. Rev. E 61, 6434 (2000); B.V. Chirikov and F.Vivaldi, Physica D 129, 223 (1999); G.M Zaslavsky, Phys. Rep. 371, 461 (2002).

[13] G. Boffetta, M. Cencini, M. Falcioni, and A. Vulpiani, Phys. Rep. 356, 367 (2002). [OpenAIRE]

[14] A. Politi, R. Livi, G.L. Oppo, and R. Kapral, Eur. Lett. 22, 571 (1993).

[15] B.F. Green, J.E.K. Smith, and L. Klem, J ACM 6(4), 527 (1959).

36 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2005

Properties making a chaotic system a good pseudo random number generator

Falcioni, Massimo; Palatella, Luigi; Pigolotti, Simone; Vulpiani, Angelo;