publication . Preprint . 2017

A characterization of trace zero bisymmetric nonnegative $5 \times 5$ matrices

Somphotphisut, Somchai; Wiboonton, Keng;
Open Access English
  • Published: 22 Apr 2017
Abstract
Let $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4 \geq \lambda_5 \geq -\lambda_1$ be real numbers such that $\sum_{i=1}^5 \lambda_i =0$. In \cite{oren}, O. Spector prove that a necessary and sufficient condition for $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$ to be the eigenvalues of a symmetric nonnegative $5 \times 5$ matrix is "$\lambda_2+\lambda_5<0$ and $\sum_{i=1}^5 \lambda_{i}^{3} \geq 0"$. In this article, we show that this condition is also a necessary and sufficient condition for $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$ to be the spectrum of a traceless bisymmetric nonnegative $5 \times 5$ matrix.
Subjects
arXiv: Mathematics::Spectral TheoryMathematics::Number Theory
free text keywords: Mathematics - Rings and Algebras, 15A18
Download from
16 references, page 1 of 2

[1] A. Borobia. On the nonnegative eigenvalue problem, Linear Algebra Appl., 223-224: 131- 140, 1995. [OpenAIRE]

[2] A. Cantoni and P. Butler. Eigenvalues and Eigenvector of Symmetric Centrosymmetric matrices, Linear Algebra Appl.,13: 275-288, 1976. [OpenAIRE]

[3] C. Johnson, T.J. Laffey, and R. Loewy. The real and the symmetric nonnegative inverse eigenvalue problems are different, Proc. Amer. Math. Soc., 124: 36473651, 1996.

[4] A.I. Julio and R.L. Soto. Persymmetric and bisymmetric nonnegative inverse eigenvalues problem, Linear Algebra Appl., 469: 130-152, 2015.

[5] R.B. Kellogg. Matrices similar to a positive or essentially positive matrix, Linear Algebra Appl., 4: 191-204, 1971. [OpenAIRE]

[6] T. Laffey and E. Meehan. A characterization of trace zero nonnegative 5×5 matrices, Linear Algebra Appl., 302-303: 295-302, 1999. [OpenAIRE]

[7] R. Loewy and D. London. A note on an inverse problem for nonnegative matrices, Linear and Multilinear Algebra, 6: 83-90, 1978. [OpenAIRE]

[8] R. Loewy and J.J. Mcdonald. The symmetric nonnegative inverse eigenvalue problem for 5 × 5 matrices, Linear Algebra Appl., 393: 265-298, 2004.

[9] H. Perfect. Methods of constructing certatin stochastic matrices II, Duke Math. J., 22: 305-311, 1955. [OpenAIRE]

[10] R. Reams. An inequality for nonnegative matrices and the inverse eigenvalue problem, Linear and Multilinear Algebra, 41: 367-375, 1996.

[11] F. Salzmann. A note on eigenvalues of nonnegative matrices, Linear Algebra Appl., 5: 329- 338, 1972.

[12] R.L. Soto. Existence and construction of nonnegative matrices with prescribe spectrum, Linear Algebra Appl., 369: 169-184, 2003.

[13] R.L. Soto and O. Rojo. Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem, Linear Algebra Appl., 416: 844-856, 2006.

[14] O. Spector. A characterization of trace zero symmetric nonnegative 5 × 5 matrices, Linear Algebra Appl., 434, 1000-1017, 2011.

[15] H.R. Suleimanova. Stochastic matrices with real eigenvlues, Soviet Math. Dokl., 66: 343- 345, 1949.

16 references, page 1 of 2
Any information missing or wrong?Report an Issue