Systematics of IIB spinorial geometry

Related identifiers: doi: 10.1088/02649381/23/5/012 
Subject: High Energy Physics  Theoryarxiv: General Relativity and Quantum Cosmology  Condensed Matter::Quantum Gases  Mathematics::Differential Geometry

References
(7)
[1] A. Dabholkar, G. W. Gibbons, J. A. Harvey and F. Ruiz Ruiz, “Superstrings And Solitons,” Nucl. Phys. B 340 (1990) 33.
[17] J. H. Schwarz and P. C. West, “Symmetries And Transformations Of Chiral N=2 D = 10 Supergravity,” Phys. Lett. B 126 (1983) 301.
[18] P. S. Howe and P. C. West, “The Complete N=2, D = 10 Supergravity,” Nucl. Phys. B 238 (1984) 181.
[19] E. A. Bergshoeff, M. de Roo, S. F. Kerstan and F. Riccioni, “IIB supergravity revisited,” arXiv:hepth/0506013.
[20] G. Papadopoulos and D. Tsimpis, “The holonomy of IIB supercovariant connection,” Class. Quant. Grav. 20 (2003) L253 [arXiv:hepth/0307127].
[21] J. Bellorin and T. Ortin, “A note on simple applications of the Killing spinor identities,” Phys. Lett. B 616 (2005) 118 [arXiv:hepth/0501246].
[23] A. Gray and L.M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura e Appl. 282 (1980) 1.

Metrics
No metrics available

 Download from


Cite this publication