Transversal infinitesimal automorphisms on K\"ahler foliations

Preprint English OPEN
Jung, Seoung Dal;
(2011)
  • Subject: 53C12, 53C55 | Mathematics - Differential Geometry
    arxiv: Mathematics::Differential Geometry | Mathematics::Complex Variables | Mathematics::Symplectic Geometry | Nuclear Experiment

Let F be a K\"ahler foliation on a compact Riemannian manifold M. we study the properties of infinitesimal automorphisms on (M,F), and in particular we concentrate on the transversal conformal field, transversal projective field and transversally holomorphic field
  • References (10)

    [1] J.A.Alvarez Lo´pez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10(1992), 179-194.

    [2] D. Dom´ınguez, A tenseness theorem for Riemannian foliations, C. R. Acad. Sci. S´er. I 320(1995), 1331-1335.

    [3] S. D. Jung, Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1-form, J. Geom. Phys. 57(2007), 1239-1246.

    [9] F. W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tˆohoku Math. J. 34(1982), 525-538.

    [10] S. Nishikawa and Ph. Tondeur, Transversal infinitesimal automorphisms for harmonic K¨ahler foliations, Tohoku Math. J. 40(1988), 599-611.

    [11] J. S. Pak and S. Yorozu, Transverse fields on foliated Riemannian manifolds, J. Korean Math. Soc. 25(1988), 83-92.

    [12] E. Park and K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118(1996), 1249-1275.

    [13] Y. Tashiro, On conformal and projective transformations in K¨ahlerian manifolds, Tohoku Math. J. 14(1962), 317-320.

    [14] Ph. Tondeur, Foliations on Riemannian manifolds, Springer-Verlag, NewYork, 1988.

    [15] K. Yano, On harmonic and Killing vector fields, Ann. of Math. 55(1952), 38-45.

  • Metrics
Share - Bookmark