A note on supercyclic operators in locally convex spaces

Preprint English OPEN
Albanese, Angela A. ; Jornet, David (2018)
  • Subject: Mathematics - Functional Analysis | 46A04, 47A35, 47A16

We treat some questions related to supercyclicity of continuous linear operators when acting in locally convex spaces. We extend results of Ansari and Bourdon and consider doubly power bounded operators in this general setting. Some examples are given.
  • References (11)
    11 references, page 1 of 2

    [1] Y. A. Abramovich and C. D. Aliprantis. An invitation to operator theory, volume 50 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

    [2] Alexandru Aleman and Laurian Suciu. On ergodic operator means in Banach spaces. Integral Equations Operator Theory, 85(2):259-287, 2016.

    [3] Shamim I. Ansari and Paul S. Bourdon. Some properties of cyclic operators. Acta Sci. Math. (Szeged), 63(1-2):195-207, 1997.

    [4] Fr´ed´eric Bayart and E´tienne Matheron. Dynamics of linear operators, volume 179 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2009.

    [5] Mar´ıa Jos´e Beltr´an, Jos´e Bonet, and Carmen Ferna´ndez. Classical operators on the Ho¨rmander algebras. Discrete Contin. Dyn. Syst., 35(2):637-652, 2015.

    [6] Jos´e Bonet and Pawel Doman´ski. A note on mean ergodic composition operators on spaces of holomorphic functions. Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. RACSAM, 105(2):389-396, 2011.

    [7] P. S. Bourdon, N. S. Feldman, and J. H. Shapiro. Some properties of N -supercyclic operators. Studia Math., 165(2):135-157, 2004.

    [8] Edgar R. Lorch. The integral representation of weakly almost-periodic transformations in reflexive vector spaces. Trans. Amer. Math. Soc., 49:18-40, 1941.

    [9] Reinhold Meise and Dietmar Vogt. Introduction to functional analysis, volume 2 of Oxford Graduate Texts in Mathematics. The Clarendon Press, Oxford University Press, New York, 1997. Translated from the German by M. S. Ramanujan and revised by the authors.

    [10] V. Mu¨ller. Power bounded operators and supercyclic vectors. Proc. Amer. Math. Soc., 131(12):3807-3812, 2003.

  • Metrics
    No metrics available
Share - Bookmark