TensorFlow: A system for large-scale machine learning

Preprint English OPEN
Abadi, Martín; Barham, Paul; Chen, Jianmin; Chen, Zhifeng; Davis, Andy; Dean, Jeffrey; Devin, Matthieu; Ghemawat, Sanjay; Irving, Geoffrey; Isard, Michael; Kudlur, Manjunath; Levenberg, Josh; Monga, Rajat; Moore, Sherry; Murray, Derek G.; Steiner, Benoit; Tucker, Paul; Vasudevan, Vijay; Warden, Pete; Wicke, Martin; Yu, Yuan; Zheng, Xiaoqiang;
(2016)
  • Subject: Computer Science - Distributed, Parallel, and Cluster Computing | Computer Science - Artificial Intelligence

TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many m... View more
  • References (52)
    52 references, page 1 of 6

    [1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jo´zefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Vie´gas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. CoRR, abs/1603.04467, 2016. arxiv.org/abs/1603.04467. Software available from tensorflow.org.

    [3] A. Angelova, A. Krizhevsky, and V. Vanhoucke. Pedestrian detection with a large-field-of-view deep network. In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages 704-711. IEEE, 2015. CalTech PDF.

    [4] Arvind and D. E. Culler. Annual review of computer science vol. 1, 1986. chapter Dataflow Architectures, pages 225-253. 1986. www.dtic.mil/cgi-bin/GetTRDoc?Location=U2& doc=GetTRDoc.pdf&AD=ADA166235.

    [5] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recognition with visual attention. arXiv preprint arXiv:1412.7755, 2014. arxiv.org/abs/1412.7755.

    [6] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model.

    [12] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems. In Proceedings of the Workshop on Machine Learning Systems at Neural Information Processing Systems (LearningSys), Dec. 2015. www.cs.cmu.edu/ muli/file/mxnet-learning-sys.pdf.

    [13] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer. cuDNN: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014. arxiv.org/abs/1410.0759.

    [14] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project Adam: Building an efficient and scalable deep learning training system. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 571-582, 2014. www.usenix.org/system/files/conference/osdi14/ osdi14-paper-chilimbi.pdf.

    [15] S. Chintala. convnet-benchmarks, github.com/soumith/convnet-benchmarks.

    2016. [24] J. Gonzalez-Dominguez, I. Lopez-Moreno, P. J. Moreno, and J. Gonzalez-Rodriguez. Frame-by-frame language identification in short utterances using deep neural networks. Neural Networks, 64:49-58, 2015. research.google.com/en//pubs/archive/42929.pdf.

  • Metrics
Share - Bookmark