Recent development of chaos theory in topological dynamics

Preprint English OPEN
Li, Jian; Ye, Xiangdong;
(2015)
  • Related identifiers: doi: 10.1007/s10114-015-4574-0
  • Subject: 54H20, 37B05, 37B40 | Mathematics - Dynamical Systems
    arxiv: Nonlinear Sciences::Chaotic Dynamics

We give a summary on the recent development of chaos theory in topological dynamics, focusing on Li-Yorke chaos, Devaney chaos, distributional chaos, positive topological entropy, weakly mixing sets and so on, and their relationships.
  • References (112)
    112 references, page 1 of 12

    1. R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR0175106

    2. Ethan Akin, Recurrence in topological dynamics: Furstenberg families and Ellis actions, The University Series in Mathematics, Plenum Press, New York, 1997. MR1467479

    3. Ethan Akin, Joseph Auslander, and Kenneth Berg, When is a transitive map chaotic?, Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., vol. 5, de Gruyter, Berlin, 1996, pp. 25-40. MR1412595

    4. Ethan Akin and Eli Glasner, Residual properties and almost equicontinuity, J. Anal. Math. 84 (2001), 243-286. MR1849204

    5. Ethan Akin, Eli Glasner, Wen Huang, Song Shao, and Xiangdong Ye, Sufficient conditions under which a transitive system is chaotic, Ergodic Theory Dynam. Systems 30 (2010), no. 5, 1277-1310. MR2718894

    6. Ethan Akin and Sergi˘ı Kolyada, Li-Yorke sensitivity, Nonlinearity 16 (2003), no. 4, 1421-1433. MR1986303

    7. Joseph Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. MR956049

    8. Joseph Auslander and James A. Yorke, Interval maps, factors of maps, and chaos, Toˆhoku Math. J. (2) 32 (1980), no. 2, 177-188. MR580273

    9. Francisco Balibrea, Juan L. G. Guirao, and Piotr Oprocha, On invariant ε -scrambled sets, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 20 (2010), no. 9, 2925-2935. MR2738744

    10. Francisco Balibrea, J. Sm´ıtal, and M. Sˇtefa´nkova´, The three versions of distributional chaos, Chaos Solitons Fractals 23 (2005), no. 5, 1581-1583. MR2101573

  • Metrics
Share - Bookmark