publication . Article . Preprint . 2015

Recent development of chaos theory in topological dynamics

Xiangdong Ye; Jian Li;
Open Access
  • Published: 15 Feb 2015 Journal: Acta Mathematica Sinica, English Series, volume 32, pages 83-114 (issn: 1439-8516, eissn: 1439-7617, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
Abstract
We give a summary on the recent development of chaos theory in topological dynamics, focusing on Li-Yorke chaos, Devaney chaos, distributional chaos, positive topological entropy, weakly mixing sets and so on, and their relationships.
Subjects
arXiv: Nonlinear Sciences::Chaotic Dynamics
free text keywords: Applied Mathematics, General Mathematics, Mathematics - Dynamical Systems, 54H20, 37B05, 37B40, Topological dynamics, medicine.medical_specialty, medicine, Chaos theory, Mathematics, Mathematical physics, Topological entropy, Statistical physics, Butterfly effect
112 references, page 1 of 8

1. R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR0175106

2. Ethan Akin, Recurrence in topological dynamics: Furstenberg families and Ellis actions, The University Series in Mathematics, Plenum Press, New York, 1997. MR1467479

3. Ethan Akin, Joseph Auslander, and Kenneth Berg, When is a transitive map chaotic?, Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., vol. 5, de Gruyter, Berlin, 1996, pp. 25-40. MR1412595

4. Ethan Akin and Eli Glasner, Residual properties and almost equicontinuity, J. Anal. Math. 84 (2001), 243-286. MR1849204 [OpenAIRE]

5. Ethan Akin, Eli Glasner, Wen Huang, Song Shao, and Xiangdong Ye, Sufficient conditions under which a transitive system is chaotic, Ergodic Theory Dynam. Systems 30 (2010), no. 5, 1277-1310. MR2718894

6. Ethan Akin and Sergi˘ı Kolyada, Li-Yorke sensitivity, Nonlinearity 16 (2003), no. 4, 1421-1433. MR1986303

7. Joseph Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. MR956049

8. Joseph Auslander and James A. Yorke, Interval maps, factors of maps, and chaos, Toˆhoku Math. J. (2) 32 (1980), no. 2, 177-188. MR580273

9. Francisco Balibrea, Juan L. G. Guirao, and Piotr Oprocha, On invariant ε -scrambled sets, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 20 (2010), no. 9, 2925-2935. MR2738744

10. Francisco Balibrea, J. Sm´ıtal, and M. Sˇtefa´nkova´, The three versions of distributional chaos, Chaos Solitons Fractals 23 (2005), no. 5, 1581-1583. MR2101573

11. J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), no. 4, 332-334. MR1157223

12. John Banks, Chaos for induced hyperspace maps, Chaos Solitons Fractals 25 (2005), no. 3, 681-685. MR2132366

13. Walter Bauer and Karl Sigmund, Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math. 79 (1975), 81-92. MR0370540

14. Franc¸ois Blanchard, Topological chaos: what may this mean?, J. Difference Equ. Appl. 15 (2009), no. 1, 23-46. MR2484415

15. Franc¸ois Blanchard, Eli Glasner, Sergi˘ı Kolyada, and Alejandro Maass, On Li-Yorke pairs, J. Reine Angew. Math. 547 (2002), 51-68. MR1900136

112 references, page 1 of 8
Any information missing or wrong?Report an Issue