publication . Preprint . Other literature type . Article . 2005

STS observations of Landau levels at graphite surfaces.

T. Matsui; H. Kambara; Y. Niimi; K. Tagami; M. Tsukada; Hiroshi Fukuyama;
Open Access English
  • Published: 07 Jun 2005
Abstract
Scanning tunneling spectroscopy (STS) measurements were made on surfaces of two different kinds of graphite samples, Kish graphite and highly oriented pyrolytic graphite (HOPG), at very low temperatures and in high magnetic fields. We observed a series of peaks in the tunnel spectra associated with Landau quantization of the quasi-two-dimensional electrons and holes. A comparison with the calculated local density of states at the surface layers allows us to identify Kish graphite as bulk graphite and HOPG as graphite with a finite thickness of 40 layers. This explains the qualitative difference between the two graphites reported in the recent transport measureme...
Subjects
arXiv: Condensed Matter::Materials SciencePhysics::Atomic and Molecular Clusters
free text keywords: Condensed Matter - Other Condensed Matter, General Physics and Astronomy, Magnetic field, Scanning tunneling spectroscopy, Graphite, Spectral line, Physics, Electron, Landau quantization, Local density of states, Condensed matter physics, Highly oriented pyrolytic graphite
Related Organizations
16 references, page 1 of 2

[1] Y. Kopelevich et al., Phys. Rev. Lett. 90, 156402 (2003).

[2] Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).

[3] H. Kempa, P. Esquinazi, and Y. Kopelevich, Phys. Rev. B 65, 241101(R) (2002).

[4] D.V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001); D.V. Khveshchenko, ivid., 246802 (2001); E.V. Gorbar et al., Phys. Rev. B 66, 045108 (2002).

[5] G. Baskaran and S.A. Jafari, Phys. Rev. Lett. 89, 016402 (2002).

[6] M. Morgenstern et al., Phys. Rev. Lett. 90, 056804 (2003).

[7] T. Matsui et al., J. Low Temp. Phys. 121, 803 (2000); T. Matsui et al., Physica B 329, 1653 (2003); H. Kambara, T. Matsui, and H. Fukuyama, to be published.

[8] We used Kish graphite samples from the same batch as that for the type B samples in Y. Iye, L.E. McNeil, and G. Dresselhaus, Phys. Rev. B 30, 7009 (1984).

[9] Super Graphite (grade MB), Matsushita Electric Industrial Co., Ltd.

[10] K. Nakao, J. Phys. Soc. Jpn. 40, 761 (1976).

[11] G. Dresselhaus, Phys. Rev. B 10, 3602 (1974).

[12] J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958); J. W. McClure, Phys. Rev. 108, 612 (1957).

[13] M. B. Nardelli, Phys. Rev. B 60, 7828 (1999).

[14] K. Tagami and M. Tsukada, to be published.

[15] J.W.G. Wild¨oer, C.J.P.M. Harmans, and H. van Kempen, Phys. Rev. B 55, R16013 (1997).

16 references, page 1 of 2
Abstract
Scanning tunneling spectroscopy (STS) measurements were made on surfaces of two different kinds of graphite samples, Kish graphite and highly oriented pyrolytic graphite (HOPG), at very low temperatures and in high magnetic fields. We observed a series of peaks in the tunnel spectra associated with Landau quantization of the quasi-two-dimensional electrons and holes. A comparison with the calculated local density of states at the surface layers allows us to identify Kish graphite as bulk graphite and HOPG as graphite with a finite thickness of 40 layers. This explains the qualitative difference between the two graphites reported in the recent transport measureme...
Subjects
arXiv: Condensed Matter::Materials SciencePhysics::Atomic and Molecular Clusters
free text keywords: Condensed Matter - Other Condensed Matter, General Physics and Astronomy, Magnetic field, Scanning tunneling spectroscopy, Graphite, Spectral line, Physics, Electron, Landau quantization, Local density of states, Condensed matter physics, Highly oriented pyrolytic graphite
Related Organizations
16 references, page 1 of 2

[1] Y. Kopelevich et al., Phys. Rev. Lett. 90, 156402 (2003).

[2] Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).

[3] H. Kempa, P. Esquinazi, and Y. Kopelevich, Phys. Rev. B 65, 241101(R) (2002).

[4] D.V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001); D.V. Khveshchenko, ivid., 246802 (2001); E.V. Gorbar et al., Phys. Rev. B 66, 045108 (2002).

[5] G. Baskaran and S.A. Jafari, Phys. Rev. Lett. 89, 016402 (2002).

[6] M. Morgenstern et al., Phys. Rev. Lett. 90, 056804 (2003).

[7] T. Matsui et al., J. Low Temp. Phys. 121, 803 (2000); T. Matsui et al., Physica B 329, 1653 (2003); H. Kambara, T. Matsui, and H. Fukuyama, to be published.

[8] We used Kish graphite samples from the same batch as that for the type B samples in Y. Iye, L.E. McNeil, and G. Dresselhaus, Phys. Rev. B 30, 7009 (1984).

[9] Super Graphite (grade MB), Matsushita Electric Industrial Co., Ltd.

[10] K. Nakao, J. Phys. Soc. Jpn. 40, 761 (1976).

[11] G. Dresselhaus, Phys. Rev. B 10, 3602 (1974).

[12] J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958); J. W. McClure, Phys. Rev. 108, 612 (1957).

[13] M. B. Nardelli, Phys. Rev. B 60, 7828 (1999).

[14] K. Tagami and M. Tsukada, to be published.

[15] J.W.G. Wild¨oer, C.J.P.M. Harmans, and H. van Kempen, Phys. Rev. B 55, R16013 (1997).

16 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Other literature type . Article . 2005

STS observations of Landau levels at graphite surfaces.

T. Matsui; H. Kambara; Y. Niimi; K. Tagami; M. Tsukada; Hiroshi Fukuyama;