publication . Preprint . 2014

The monotonicity and convexity of a function involving digamma one and their applications

Yang, Zhen-Hang;
Open Access English
  • Published: 10 Aug 2014
Abstract
Comment: 20 pages
Subjects
free text keywords: Mathematics - Classical Analysis and ODEs, 11B83, 11B73
Download from
41 references, page 1 of 3

(n ∈ N) . 1 3 −12773700 8 60x + 60x2 + 47 2 81x + 81x2 + 23 2 × 180x + 60x2 + 167 2 243x + 81x2 + 185 2 (x + 1)3 . 2 560 x + 23 4 + 520 x + 23 2 + 27 (x + 1)3

[1] M. Abramowttz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1972.

[2] H. Alzer, Some gamma function inequalities , Math. Comp., 60 (201) (1993) 337-346. [OpenAIRE]

[3] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp., 66 (217) (1997) 373-389. [OpenAIRE]

[4] H. Alzer and J. Wells, Inequalities for the polygamma functions, SIAM J. Math. Anal., 29 (6) (1998) 1459-1466. [OpenAIRE]

[5] H. Alzer, Inequalities for the Gamma function, Proc. Amer. Math. Soc., 128 (1) (1999) 141-147..

[6] H. Alzer and S. Ruscheweyh, A subadditive property of the gamma function, J. Math. Anal. Appl., 285 (2003) 564-577. [OpenAIRE]

[7] H. Alzer, Sharp inequalities for digamma and polygamma functions, Forum Math., 16 (2004) 181-221 [OpenAIRE]

[8] H. Alzer and N. Batir, Monotonicity properties of the gamma function, Appl. Math. Lett., 20 (7) (2007) 778-781. [OpenAIRE]

[9] H. Alzer, Inequalities for the harmonic numbers, Math. Z., 267 (1-2) (2011) 367-384.

[10] G. D. Anderson and S. L. Qiu, A monotonicity property of the gamma function, Proc. Amer. Math. Soc., 125 (11) (1997) 3355-3362.

[11] N. Batir, Some new inequalities for gamma and polygamma functions, J. Inequal. Pure Appl. Math., 6 (4) (2005) Art. 103. . (Available online at http://jipam.vu.edu.au/article.php?sid=577) [OpenAIRE]

[12] N. Batir, On some properties of digamma and polygamma functions, J. Math. Anal. Appl., 328 (1) (2007) 452-465. [OpenAIRE]

[13] N. Batir, Inequalities for the gamma function, Arch. Math. 91 (2008) 554-563.

[14] N. Batir, Inequalities for the Gamma Function, RGMIA Res. Rep. Coll., 12 (1) (2009) Art. 9. [OpenAIRE]

41 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue