publication . Article . Preprint . 2006

Liouville theory and uniformization of four-punctured sphere

Hadasz, Leszek; Jaskolski, Zbigniew;
Open Access
  • Published: 25 Apr 2006 Journal: Journal of Mathematical Physics, volume 47, page 82,304 (issn: 0022-2488, eissn: 1089-7658, Copyright policy)
  • Publisher: AIP Publishing
Abstract
Comment: 17 pages, no figures
Subjects
arXiv: High Energy Physics::Theory
free text keywords: Mathematical Physics, Statistical and Nonlinear Physics, Liouville's theorem (complex analysis), Liouville field theory, Liouville's formula, Quantum mechanics, Liouville's theorem (Hamiltonian), Uniformization (set theory), Conformal map, Liouville function, Liouville's theorem (differential algebra), Mathematics, Mathematical analysis, High Energy Physics - Theory
Related Organizations
20 references, page 1 of 2

[1] A. B. Zamolodchikov and A. B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577. [OpenAIRE]

[2] J. A. Hempel, On the uniformization of the n-punctured sphere Bull. London Soc. 20 (1988) 97 - 115.

[3] L. V. Ahlfors, Complex analysis (Third edition, McGraw-Hill, Kogakusha, Tokyo,1979).

[4] L. Takhtajan and P. Zograf, Hyperbolic 2-spheres with conical singularities, accessory parameters and Ka¨hler metrics on M0,n, Trans. Amer. Math. Soc. 355 (2003), 1857-1867, [arXiv:math.cv/0112170]. [OpenAIRE]

[5] M. Heins, On a class of conformal metrics, Nagoya Math.J. 21 (1962) 1 - 60. [OpenAIRE]

[6] E. Picard, De l'´equation Δ2u = keu sur une surface de Riemann ferm´ee J.Math.Pure Appl. (4) 9 (1893), 273 - 291.

[7] E. Picard, De l'int´eegration de l'´equation Δu = eu sur une surface de Riemann ferm´ee Crelle's J. 130 (4) 9 (1905), 243 - 258.

[8] M. Troyanov, Prescribing curvature on compact surfaces with conical singularities Trans.Amer.Math.Soc. 134 (1991), 793 - 821. [OpenAIRE]

[9] A. M. Polyakov as reported in refs. [4, 10, 11].

[10] L. A. Takhtajan, Topics in quantum geometry of Riemann surfaces: Two-dimensional quantum gravity, published in Como Quantum Groups 1994:541-580, [arXiv:hepth/9409088]. [OpenAIRE]

[11] P. G. Zograf and L. A. Takhtajan, On Liouville equation, accessory parameters and the geometry of Teichmu¨ller space for Riemann surface of genus 0, Math. USSR Sbornik 60 (1988) 143. [OpenAIRE]

[12] L. Cantini, P. Menotti and D. Seminara, Proof of Polyakov conjecture for general elliptic singularities, Phys. Lett. B 517, 203 (2001) [arXiv:hep-th/0105081]. [OpenAIRE]

[13] L. Hadasz, Z. Jasko´lski and M. Pia¸tek, Classical geometry from the quantum Liouville theory, Nucl. Phys. B 724 (2005) 529 [arXiv:hep-th/0504204]. [OpenAIRE]

[14] A. Erdelyi, Higher Transcendental Functions, vol. I, McGraw-Hill, New York, 1953.

[15] L. Hadasz and Z. Jasko´lski, Classical Liouville action on the sphere with three hyperbolic singularities, Nucl. Phys. B 694, 493 (2004) [arXiv:hep-th/0309267].

20 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue