Diagonalization and Many-Body Localization for a Disordered Quantum Spin Chain

Preprint English OPEN
Imbrie, John Z;
(2016)
  • Related identifiers: doi: 10.1103/PhysRevLett.117.027201
  • Subject: 82D30, 60K35, 82B44, 82D30 | Mathematical Physics | Mathematics - Spectral Theory | Condensed Matter - Disordered Systems and Neural Networks

We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a KAM-style construct... View more
  • References (24)
    24 references, page 1 of 3

    [7] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. (N. Y). 321, 1126 (2006).

    [8] M. Znidaric, T. Prosen, and P. Prelovsek, Phys. Rev. B 77, 064426 (2008).

    [9] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).

    [10] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).

    [11] B. Bauer and C. Nayak, J. Stat. Mech. Theory Exp. 2013, P09005 (2013).

    [12] R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter Phys. 6, 15 (2015).

    [13] R. B. Gri ths, Phys. Rev. Lett. 23, 17 (1969).

    [14] E. Hamza, R. Sims, and G. Stolz, Commun. Math. Phys. 315, 215 (2012).

    [15] V. Mastropietro, Phys. Rev. Lett. 115, 180401 (2015).

    [16] J. Z. Imbrie and R. Mavi, J. Stat. Phys. 162, 1451 (2016).

  • Related Organizations (3)
  • Metrics
Share - Bookmark