Finally, we will demonstrate the existence of complete problems for Fuzzy-NPA(1). Our choice of such

problem is Fuzzy-Circuit-SAT, defined in Section 4.4. [1] M. F. Abbod, D. G. von Keyserlingk, D. A. Linkens, and M. Mahfouf. Survey of utilisation of fuzzy

technology in medicine and healthcare. Fuzzy Sets and Systems 120, 331-349, 2001. [2] G. Ausiello, P. Crescenzi, G. Gambosi, V, Kann, Marchetti-Spaccamela, and M. Protasi. Complexity

Springer, 2003. [3] M. Blue, B. Bush, and J. Puckett. Unified approach to fuzzy graph problems. Fuzzy Sets and

Systems, 125, 355-368, 2002. [4] M. Doostfatemeh and S. Kremer. New directions in fuzzy automata. Int. J. Approx. Reason., 38,

175-214, 2005. [5] M. R. Garey and D. S. Johnson. Computers and Intractability: Guide to the Theory of NP-

Completeness. W. H. Freeman and Company, 1979. [6] R. Goetschel Jr. and W. Voxman. Fuzzy circuits. Fuzzy Sets and Systems, 32, 35-43, 1989. [7] M. Hanss. Applied Fuzzy Arithmetic: An Introduction with Engineering Applications. Springer, 2010. [8] K. Hirota. Fundamentals of fuzzy logical circuits. In Proc. of IJCAI '91 Workshops on Fuzzy Logic

and Fuzzy Control, Lecture Notes in Computer Science, vol. 833, pp. 143-157, 1994. [9] M. W. Krentel. The complexity of optimization problems. J. Comput. Syst., 36, 490-509, 1988. [10] E. T. Lee and L. A. Zadeh. Note on fuzzy languages. Inform. Sci., 4, 421-434, 1969. [11] L. Li, S. N. Kabadi, and K. P. K. Nair. Fuzzy models for single-period inventory problem. Fuzzy

Sets and Systems 132, 273-289, 2002. [12] E. S. Santos. Fuzzy algorithms. Inform. Control, 17, 326-339, 1970. [13] L. A. Zadeh. Fuzzy sets. Inform. Control 8, 338-353, 1965. [14] L. A. Zadeh. Fuzzy algorithms. Inform. Control, 12, 94-102, 1968.