Quark ensembles with infinite correlation length

Preprint English OPEN
Molodtsov, S. V.; Zinovjev, G. M.;
(2014)
  • Subject: High Energy Physics - Phenomenology

By studying quark ensembles with infinite correlation length we formulate the quantum field theory model that, as we show, is exactly integrable and develops an instability of its standard vacuum ensemble (the Dirac sea). We argue such an instability is rooted in high g... View more
  • References (25)
    25 references, page 1 of 3

    Ukraine, Grant N0 Ph58/04.

    [1] L. D. Faddeev, Theor. Mat. Fiz. 148 (2006) 133.

    [2] W. Thirring, Ann. Phys. 3 (1958) 91; J. M. Luttinger, J. Math. Phys. 4 (1963) 1154; D. C. Mattis and E. H. Lieb, J. Math. Phys. 6 (1965) 304.

    [3] ”Integrable Quantum Field Theories” , Lecture Notes in Physics, Vol. 151, Springer-Verlag, New York, 1982, ed. by J. Hietarinta and C. Montonen; N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, ”Correlation function of integrable systems and quantum inverse scattering method” , Nauka, Moscow, 1992; V. Mastropietro and D. C. Mattis, ”Luttinger model. The First 50 Years and Some New Directions” , Series on Directions in Condensed Matter Physics-Volume 20, 2014; A. B. Zamolodchikov, Al. B. Zamolodchikov, ”Conformal Field Theory and Critical Phenomena in TwoDimensional Systems” .

    [4] M. V. Sadovskii, ”Diagrammatics” , Singapore: World Scientific, 2006. L. V. Keldysh, Doctor thesis, FIAN, (1965); E. V. Kane, Phys. Rev. 131 (1963) 79; V. L. Bonch-Bruevich, in ”Physics of solid states” , M., VINITI, (1965).

    [5] G. M. Zinovjev and S. V. Molodtsov, Theor. Mat. Fiz. 160 (2009) 444; S. V. Molodtsov and G. M. Zinovjev, Phys. Rev. D 80 (2009) 076001; S. V. Molodtsov, A. N. Sissakian and G. M. Zinovjev, Europhys. Lett. 87 (2009) 61001.

    [6] B. F. Bayman, Nucl. Phys. 15 (1960) 33.

    [7] J. M. Blatt, Prog. Theor. Phys. 24 (1960) 851; K. Dietrich, H. J. Mang and H. Pradal, Phys. Rev. 135 (1964) B22.

    [8] Yu. A. Simonov, Phys. Lett. B 412 (1997) 371.

    [9] John von Neumann, ”Mathematical Foundation of Quantum Mechanics” , Princeton University Press, 1955.

  • Related Organizations (4)
  • Metrics
Share - Bookmark