publication . Preprint . 2014

Quark ensembles with infinite correlation length

Molodtsov, S. V.; Zinovjev, G. M.;
Open Access English
  • Published: 20 Jun 2014
Abstract
By studying quark ensembles with infinite correlation length we formulate the quantum field theory model that, as we show, is exactly integrable and develops an instability of its standard vacuum ensemble (the Dirac sea). We argue such an instability is rooted in high ground state degeneracy (for 'realistic' space-time dimensions) featuring a fairly specific form of energy distribution, and with the cutoff parameter going to infinity this inherent energy distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. Analysing some possible vacuum ensembles such as the Dirac sea, neutral ensemble, color superconducting and BCS states we find ...
Subjects
free text keywords: High Energy Physics - Phenomenology
Download from
25 references, page 1 of 2

Ukraine, Grant N0 Ph58/04.

[1] L. D. Faddeev, Theor. Mat. Fiz. 148 (2006) 133.

[2] W. Thirring, Ann. Phys. 3 (1958) 91; J. M. Luttinger, J. Math. Phys. 4 (1963) 1154; D. C. Mattis and E. H. Lieb, J. Math. Phys. 6 (1965) 304.

[3] ”Integrable Quantum Field Theories” , Lecture Notes in Physics, Vol. 151, Springer-Verlag, New York, 1982, ed. by J. Hietarinta and C. Montonen; N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, ”Correlation function of integrable systems and quantum inverse scattering method” , Nauka, Moscow, 1992; V. Mastropietro and D. C. Mattis, ”Luttinger model. The First 50 Years and Some New Directions” , Series on Directions in Condensed Matter Physics-Volume 20, 2014; A. B. Zamolodchikov, Al. B. Zamolodchikov, ”Conformal Field Theory and Critical Phenomena in TwoDimensional Systems” .

[4] M. V. Sadovskii, ”Diagrammatics” , Singapore: World Scientific, 2006. L. V. Keldysh, Doctor thesis, FIAN, (1965); E. V. Kane, Phys. Rev. 131 (1963) 79; V. L. Bonch-Bruevich, in ”Physics of solid states” , M., VINITI, (1965).

[5] G. M. Zinovjev and S. V. Molodtsov, Theor. Mat. Fiz. 160 (2009) 444; S. V. Molodtsov and G. M. Zinovjev, Phys. Rev. D 80 (2009) 076001; S. V. Molodtsov, A. N. Sissakian and G. M. Zinovjev, Europhys. Lett. 87 (2009) 61001.

[6] B. F. Bayman, Nucl. Phys. 15 (1960) 33.

[7] J. M. Blatt, Prog. Theor. Phys. 24 (1960) 851; K. Dietrich, H. J. Mang and H. Pradal, Phys. Rev. 135 (1964) B22.

[8] Yu. A. Simonov, Phys. Lett. B 412 (1997) 371.

[9] John von Neumann, ”Mathematical Foundation of Quantum Mechanics” , Princeton University Press, 1955.

[10] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 (1961) 345.

[11] M. Faber and A. N. Ivanov, Eur. Phys. J. C 20 (2001) 723; Phys. Lett. B563 (2003) 231; T. Fujita, M. Hiramoto, T. Homma, and H. Takahashi, J. Phys. Soc. Jap. 74 (2005) 1143.

[12] T. Fujita, M. Hiramoto and H. Takahashi, ”Bosons after symmetry breaking in quantum field theory” , Nova Science Publishers, Inc. New York, 2009.

[13] F. A. Berezin, ”The second quantization method” , Nauka, Moscow, 1986; J.-P. Blaizot and G. Ripka, ”Quantum theory of Finite Systems” , The MIT Press, 1985.

[14] N. Andrei and J. H. Lowenstein, Phys. Rev. Lett. 43 (1979) 1698.

25 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue