publication . Conference object . Preprint . 2011

On principles of inductive inference

Kostecki, Ryszard Paweł;
Open Access
  • Published: 14 Sep 2011
  • Publisher: AIP
Abstract
Comment: To appear in: Goyal P. (ed.), Proceedings of the 31th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 10-15 July 2011, Waterloo, AIP Conf. Proc., Springer, Berlin
Subjects
free text keywords: Mathematics, Fiducial inference, Frequentist inference, Inductive reasoning, Artificial intelligence, business.industry, business, Inductive probability, Foundations of statistics, Bayesian inference, Predictive inference, Statistical inference, Econometrics, Mathematics - Statistics Theory, Statistics - Methodology
Related Organizations
59 references, page 1 of 4

[1] Amari S.-i., 1985, Di erential{geometrical methods in statistics, Lecture Notes in Statistics 28, Springer, Berlin.

[2] Amari S.-i., Nagaoka H., 1993, Joho kika no hoho, Iwanami Shoten, Tokyo (engl. transl. rev. ed.: 2000, Methods of information geometry, American Mathematical Society, Providence).

[3] Banerjee A., Guo X., Wang H., 2005, On the optimality of conditional expectation as a Bregman predictor, IEEE Trans. Inf. Theor. 51, 2664. articles by Berger and by Goldstein), Bayes. Anal. 1, 429.

[30] Fisher R.A., 1922, On the mathematical foundation of theoretical statistics, Phil. Trans. Roy. Soc. London Ser. A 222, 309.

[31] Fleck L., 1935, Entstehung und Entwicklung einer wissenschaftlichen Tatsache. Einfuhrung in die Lehre vom Denkstil und Denkkollektiv, Schwabe, Basel. (engl. transl. 1979, Genesis and development of the scienti c fact, Chicago University Press, Chicago).

[32] Fremlin D.H., 2000, 2001, 2002, 2003, Measure theory, Vol.1-4, Torres Fremlin, Colchester.

[33] Giere R.N., 1973, Objective single-case probabilities and the foundations of statistics, in: Suppes P. et al. (eds.), Logic, methodology and philosophy of science IV, North-Holland, Amsterdam, p.467.

[34] Hajek A., 1997, Mises redux' { redux: fteen arguments against nite frequentism, Erkenntnis 45, 209.

[35] Hajek A., 2007, The reference class problem is your problem too, Synthese 156, 563.

[36] Hajek A., 2009, Interpretations of probability, in: Zalta E.N. (ed.), Stanford encyclopedia of philosophy, Stanford. Available at: plato.stanford.edu/entries/probability-interpret.

[37] Hinkelmann K., Kempthorne O., 2005, Design and analysis of experiments, Vol.1-2, Wiley, Hoboken. [OpenAIRE]

[38] Howson C., Urbach P., 1989, Scienti c reasoning: the bayesian approach, Open Court, Chicago (2nd. ed., 1993).

[39] Hume D., 1748, Philosophical essays concerning human understanding, Millar, London.

[40] Humphreys P., 1985, Why propensities cannot be probabilities, Phil. Rev. 94, 557.

[41] Jaynes E.T., 1976, Con dence intervals vs bayesian intervals, in: Harper W.L., Hooker C.A. (eds.), Foundations of probability theory, statistical inference, and statistical theories of science, Reidel, Dordrecht, p.175.

59 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Conference object . Preprint . 2011

On principles of inductive inference

Kostecki, Ryszard Paweł;