17 references, page 1 of 2 [1] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM Review, vol. 51, no. 3, pp. 455-500, 2009.

[2] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan, “Tensor decompositions for signal processing applications: From two-way to multiway component analysis,” IEEE Signal Processing Magazine, vol. 32, no. 2, pp. 145-163, 2015.

[3] M. Vasilescu and D. Terzopoulos, “Multilinear image analysis for face recognition,” Proceedings of the International Conference on Pattern Recognition ICPR 2002, vol. 2, pp. 511-514, 2002, quebec City, Canada.

[4] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing neural networks,” in Advances in Neural Information Processing Systems, 2015, pp. 442-450.

[5] M. Ashraphijuo, V. Aggarwal, and X. Wang, “Deterministic and probabilistic conditions for finite completability of low rank tensor,” arXiv preprint arXiv:1612.01597, 2016.

[6] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring decomposition,” arXiv preprint arXiv:1606.05535, 2016.

[7] R. Oru´s, “A practical introduction to tensor networks: Matrix product states and projected entangled pair states,” Annals of Physics, vol. 349, pp. 117-158, 2014.

[8] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion using alternating minimization,” in Proceedings of the forty-fifth annual ACM symposium on Theory of computing. ACM, 2013, pp. 665-674.

[9] M. Hardt, “On the provable convergence of alternating minimization for matrix completion,” CoRR, vol. abs/1312.0925, 2013. [Online]. Available: http://arxiv.org/abs/1312.0925

[10] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp. 2295-2317, 2011.