Share  Bookmark

 Download from


Degenerate case: c33 = 0 If the fields KF1,T1 and KF2,T2 are null (c11 = 0) and spacelike (c22 > 0) respectively, they span a null plane (case III above). In this case c33 = 0, and therefore KF1,T1 , KF2,T2 and [KF1,T1 , KF2,T2 ] are not linearly independent. However, it is possible to find another independent null Killing vector which, together with KF1,T1 and KF2,T2 , generate the same so(2, 1) algebra. Without loss of generality they KF1,T1 and KF2,T2 can be taken to be orthogonal (c12 = 0), and their commutator is not linearly independent, but is given by
[1] J. D. Brown, Lower Dimensional Gravity (World Scientific, Singapore 1988).
[2] S. Carlip, Quantum Gravity in 2 + 1 Dimensions (Cambridge Univ. Press, Cambridge 1998).
[3] M. Ban˜ados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992) [arXiv:hepth/9204099].
[4] M. Ban˜ados, M. Henneaux, C. Teitelboim, and J. Zanelli Phys. Rev. D 48, 1506 (1993) [arXiv:grqc/9302012].
[5] S. Aminneborg, I. Bengtsson, S. Holst and P. Peldan, Class. Quant. Grav. 13, 2707 (1996) [arXiv:grqc/9604005].
[6] S. Holst and P. Peldan, Class. Quant. Grav. 14, 3433 (1997) [arXiv:grqc/9705067].
[7] M. Ban˜ados, Phys. Rev. D 57, 1068 (1998) [arXiv:grqc/9703040].
[8] M. Ban˜ados, A. Gomberoff and C. Mart´ınez, Class. Quant. Grav. 15, 3575 (1998) [arXiv:hepth/9805087].
[9] O. Madden and S. F. Ross, arXiv:hepth/0401205.